Skip to main content
Log in

Ultra low-voltage ultra low-power memristor based band-pass filter design and its application to EEG signal processing

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Memristor has been claimed as the passive fourth fundamental circuit element in 1971. About four decades later, a physical realization which presents memristor behavior has resulted in significant interest on memristor and it is continuing to increase at a growing rate. Memristor can provide new possibilities in analog circuit design thanks to its properties which cannot be mimicked by older passive circuit elements. Since no practically available memristor exist on the market yet, obtaining of a practical implementation which behaves like a memristor is important from the point of view real-world circuit design. In this paper, an ultra low-voltage ultra low-power DTMOS-based memristor design is presented. Ultra low-voltage, ultra low-power operational amplifier and ultra low-voltage, ultra low-power multiplier are also designed to use in the implementation. Memristor design is composed of these two type active blocks using CMOS 0.18 µm process technology with symmetric ±0.25 V supply voltages. Our memristor is used in a second order Sallen–Key band-pass filter topology. Designed memristor-based Sallen–Key band-pass filter is then used for real electroencephalogram data processing. The simulation results show that the design of adjustable memristor memristance/memductance provides tunable filter parameters and without any significant distortion with appropriate parameter set even at ultra-low power levels and at very-low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  3. Rak, A., & Cserey, G. (2010). Macromodelling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 632–636.

    Article  Google Scholar 

  4. Biolek, Z., Biolek, D., & Biolkova, V. (2009). spice model of memristor with nonlinear dopant drift. Radioengineering, 18(2), 210–214.

    Google Scholar 

  5. Batas, D., & Fiedler, H. (2010). A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 10(2), 250–255.

    Article  Google Scholar 

  6. Benderli, S., & Wey, T. A. (2009). On SPICE macromodelling of TiO2 memristors. Electronics Letters, 45(7), 377–379.

    Article  Google Scholar 

  7. Sharifi, M. J., & Banakidi, Y. M. (2010). General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. Journal to Circuits, Systems and Computers, 19(2), 407–424.

    Article  Google Scholar 

  8. Pershin, Y. V., & Ventra, M. D. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I, 57(8), 1857–1864.

    Article  MathSciNet  Google Scholar 

  9. Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuit and Systems I, 59(10), 2422–2431.

    Article  MathSciNet  Google Scholar 

  10. Mutlu, R., & Karakulak, E. (2010). Emulator circuit of TiO2 memristor with linear dopant drift made using analog multiplier. In 2010 National conference on electrical, electronics and computer engineering (ELECO), Bursa, Turkey (pp. 380–384).

  11. Yener, Ş. Ç. (2014).New opportunities in analog circuit design provided By Memristor. Ph.D. Thesis, Institute of Science and Technology, ITU, Istanbul.

  12. Yener, Ş. Ç., & Kuntman, H. (2014). Fully CMOS memristor based chaotic circuit. Radioengineering, 23(4), 1140–1149.

    Google Scholar 

  13. Yener, Ş. Ç., Uygur, A., & Kuntman, H. (2015). An ultra low-voltage ultra low-power memristor. In Proceedings of ELECO’2015: 9th international conference on electrical and electronics engineering, Bursa, Turkey (pp. 26–28).

  14. Wang W, Yu Q, Xu C, & Cui Y. (2009). Study of filter characteristics based on PWL memristor. In International conference on communications, circuits and systems, (ICCCAS). Milpitas, CA.

  15. Driscoll, T., Quinn, J., Klein, S., Kim, H. T., Kim, B. J., Pershin, Y. V., et al. (2010). Memristive adaptive filters. Applied Physics Letters, 97, 093502.1–093502.3.

    Article  Google Scholar 

  16. Lee, T. W., & Nickel, J. H. (2012). Memristor resistance modulation for analog applications. IEEE Electron Device Letters, 33, 1456–1458.

    Article  Google Scholar 

  17. Chew, Z. J., & Li, L. (2012). Printed circuit board based memristor in adaptive lowpass filter. Electronics Letters, 48, 1610–1611.

    Article  Google Scholar 

  18. Yener, Ş. Ç., Mutlu, R., & Kuntman, H. (2014). Performance analysis of a memristor- based biquad filter using its dynamic model. Informacije MIDEM—Journal of Microelectronics, Electronic Components and Materials, 44(2), 109–118.

    Google Scholar 

  19. Yener, Ş. Ç., Mutlu, R., & Kuntman, H. (2015). Memristör Temelli Sallen-Key Süzgeçler. Journal of the Faculty of Engineering and Architecture of Gazi University, 30(2), 173–184.

    Google Scholar 

  20. Yener, Ş. Ç., Mutlu, R., & Kuntman, H. H. (2015). A new memristör-based low-pass filter topology and its small-signal solution using MacLaurin series. Optoelectronics and Advanced Materials—Rapid Communications, 9(1–2), 266–273.

    Google Scholar 

  21. Uygur, A. (2013). New posibilities in low-voltage analog circuit design using DTMOS transistors. Ph.D. Thesis, Institute of Science and Technology, ITU, Istanbul.

  22. Uygur, A., & Kuntman, H. (2013). 0.4 V OTA design using DTMOS transistors for EEG data processing. In IEEE 21st signal processing and communications applications conference (SIU) (pp. 24–26). Girne: TRNC.

  23. Uygur, A., & Kuntman, H. (2013). DTMOS-based 0.4 V ultra low-voltage low-power VDTA design and its application to EEG data processing. Radioengineering, 22(2), 458–466.

    Google Scholar 

  24. Assaderaghi, F., Sinitsky, D., Parke, S. A., Bokor, J., Ko, P. K., & Chenming, H. (1997). Dynamic threshold-voltage MOSFET for ultra-low voltage VLSI. IEEE Transactions on Electron Devices, 44(3), 414–422.

    Article  Google Scholar 

  25. Coue, D., & Wilson, G. (1996). A four-quadrant subthreshold mode multiplier for analog neural-network applications. IEEE Transactions on Neural Networks, 7(5), 1212–1219.

    Article  Google Scholar 

  26. Zhong, G. (1994). Implementation of Chua’s circuit with a cubic nonlinearity. IEEE Transactions on Circuits and Systems, 41, 934–941.

    Article  Google Scholar 

  27. Muthuswamy, B. (2010). Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos, 20(5), 1335–1350.

    Article  MATH  Google Scholar 

  28. Niedermeyer, E., & da Silva, F. H. L. (2005). Electroencephalography: Basic principles, clinical applications, and related fields. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  29. Yates, D. C., & Rodriguez-Villegas, E. (2006). An ultra low power low noise chopper amplifier for wireless BEG. In 49th IEEE international midwest symposium on circuits and systems (MWSCAS’06) (pp. 449–452).

  30. Abou-Khalil, B., & Misulis, K. E. (2005). Atlas of EEG & seizure semiology: Text with DVD. Philadelphia: Butterworth-Heinemann.

    Google Scholar 

  31. Whittingstall, K., & Logothetis, N. K. (2009). Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron, 64(2), 281–289.

    Article  Google Scholar 

  32. Yazicioglu, R. F., Merken, P., Puers, R., & Van Hoof, C. (2007). A 60 mu W 60 nV/root Hz readout front-end for portable biopotential acquisition systems. IEEE Journal of Solid-State Circuits, 42(5), 1100–1110.

    Article  Google Scholar 

Download references

Acknowledgments

The preliminary version of this paper was presented in ELECO 2015 Bursa, Turkey [13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şuayb Çağrı Yener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yener, Ş.Ç., Uygur, A. & Kuntman, H.H. Ultra low-voltage ultra low-power memristor based band-pass filter design and its application to EEG signal processing. Analog Integr Circ Sig Process 89, 719–726 (2016). https://doi.org/10.1007/s10470-016-0795-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0795-0

Keywords

Navigation