Skip to main content
Log in

A wideband linear tunable CDTA and its application in field programmable analogue array

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Lee, E. K. F., & Gulak, P. G. (1991). A CMOS field-programmable analog array. IEEE Journal of Solid-State Circuits, 26(12), 1860–1867.

    Article  Google Scholar 

  2. Ionita, S., & Sofron, E. (2005). Field-programmable analog filters array with applications for fuzzy inference systems. In Proceedings of the fourth international conference on hybrid intelligent systems (HIS ‘04) (pp. 470–471).

  3. Mackensen, E., & Mueller, C. (2005). Implementation of reconfigurable micro-sensor interfaces utilizing FPAAs. In IEEE sensors (Vols. 1 and 2, pp. 1064–1067).

  4. Laknaur, A., & Wang, H. (2005). A methodology to perform online self-testing for field-programmable analog array circuits. IEEE Transactions on Instrumentation and Measurement, 54(5), 1751–1760.

    Article  Google Scholar 

  5. Baccigalupi, A., Liccardo, A., Lo Sapio, V., & Pasquino, N. (2010). Functional tests of field programmable analog arrays under the influence of electromagnetic radiation. In Proceedings of the IEEE international instrumentation and measurement technology conference (I2mtc 2010).

  6. Lon-Kou, C., Li-Shen, L., & Chih-Huei, H. (2004). A field programmable analog array using current mode transconductor-capacitor (Gm-C) technique. In Proceedings of the IEEE Asia-Pacific conference on circuits and systems.

  7. Mahmoud, S., & Soliman, E. (2013). Novel CCII-based field programmable analog array and its application to a sixth-order butterworth LPF. Radioengineering, 22(2), 440–447.

    Google Scholar 

  8. Kutuk, H., & Sung-Mo, K. (1996). A field-programmable analog array (FPAA) using switched-capacitor techniques. In IEEE international symposium on circuits and systems (ISCAS ‘96), connecting the world.

  9. Kutuk, H., & Kang, S.-M. (1997). Filter design using a new field-programmable analog array (FPAA). Analog Integrated Circuits and Signal Processing, 14(1–2), 81–90.

    Article  Google Scholar 

  10. Lee, E. F., & Hui, W. (1998). A novel switched-capacitor based field-programmable analog array architecture. Analog Integrated Circuits and Signal Processing, 17(1–2), 35–50.

    Article  Google Scholar 

  11. Bratt, A. (1998). Motorola field programmable analogue arrays, present hardware and future trends. In IEE half-day colloquium on evolvable hardware systems (Digest No. 1998/233).

  12. Koneru, S., Lee, E. K. F., & Chiu, C. (1999). A flexible 2-D switched-capacitor FPAA architecture and its mapping algorithm. In Proceedings of the 42nd Midwest symposium on circuits and systems (Vols. 1 and 2, pp. 296–299).

  13. Fernandez, D., Martinez-Alvarado, L., & Madrenas, J. (2012). A translinear, log-domain FPAA on standard CMOS technology. IEEE Journal of Solid-State Circuits, 47(2), 490–503.

    Article  Google Scholar 

  14. Becker, J., Henrici, F., Trendelenburg, S., Ortmanns, M., & Manoli, Y. (2008). A field-programmable analog array of 55 digitally tunable OTAs in a hexagonal lattice. IEEE Journal of Solid-State Circuits, 43(12), 2759–2768.

    Article  Google Scholar 

  15. Lee, E. K. F., & Gulak, P. G. (1995). A transconductor-based field-programmable analog array. In IEEE international 41st solid-state circuits conference (ISSCC 1995). Digest of technical papers.

  16. Pankiewicz, B., Wojcikowski, M., Szczepanski, S., & Yichuang, S. (2002). A field programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE Journal of Solid-State Circuits, 37(2), 125–136.

    Article  Google Scholar 

  17. Looby, C. A., & Lyden, C. (2000). Op-amp based CMOS field-programmable analogue array. IEE Proceedings-Circuits Devices and Systems, 147(2), 93–99.

    Article  Google Scholar 

  18. Lebel, E., Assi, A., & Sawan, M. (2005). Field programmable Gm-C array for wide frequency range bandpass filter applications. In IEEE international symposium on circuits and systems (ISCAS 2005).

  19. Mahmoud, S., Ali, K., Rabea, M., Amgad, A., Adel, A., Nasser, A., et al. (2011). Low power FPAA design based on OTA using 90 nm CMOS technology. In International conference on energy aware computing.

  20. Csipkes, D., Csipkes, G., Farago, P., Fernandez-Canque, H., & Hintea, S. (2012). An OTA-C field programmable analog array for multi-mode filtering applications. In 13th international conference on optimization of electrical and electronic equipment (OPTIM 2012).

  21. Gaudet, V. C., & Gulak, P. G. (1997). CMOS implementation of a current conveyor-based field-programmable analog array. In Conference record of the thirty-first Asilomar conference on signals, systems & computers.

  22. Premont, C., Grisel, R., Abouchi, N., & Chante, J. P. (1996). Current-conveyor based field programmable analog array. In IEEE 39th Midwest symposium on circuits and systems.

  23. Madian, A. H., Mahmoud, S. A., & Soliman, A. M. (2008). Field programmable analog array based on CMOS CFOA and its application. In 15th IEEE international conference on electronics, circuits and systems (ICECS 2008).

  24. Schlottmann, C. R., Abramson, D., & Hasler, P. E. (2012). A MITE-based translinear FPAA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 1–9.

    Article  Google Scholar 

  25. Tangsrirat, W., & Pukkalanun, T. (2011). Structural generation of two integrator loop filters using CDTAs and grounded capacitors. International Journal of Circuit Theory and Applications, 39(1), 31–45.

    Article  MATH  Google Scholar 

  26. Li, Y. (2011). A modified CDTA (MCDTA) and its applications: Designing current-mode sixth-order elliptic band-pass filter. Circuits, Systems, and Signal Processing, 30(6), 1383–1390.

    Article  Google Scholar 

  27. Tangsrirat, W., Pukkalanun, T., & Surakampontorn, W. (2010). Resistorless realization of current-mode first-order allpass filter using current differencing transconductance amplifiers. Microelectronics Journal, 41(2–3), 178–183.

    Article  Google Scholar 

  28. Keskin, A. U., & Biolek, D. (2006). Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proceedings-Circuits Devices and Systems, 153(3), 214–218.

    Article  Google Scholar 

  29. Jin, J., & Wang, C. H. (2012). Current-mode four-phase quadrature oscillator using current differencing transconductance amplifier based first-order allpass filter. Revue Roumaine Des Sciences Techniques-Serie Electrotechnique Et Energetique, 57(3), 291–300.

    Google Scholar 

  30. Jin, J., & Wang, C. H. (2014). CDTA-based electronically tunable current-mode quadrature oscillator. International Journal of Electronics, 101(8), 1086–1095.

    Article  Google Scholar 

  31. Jaikla, W., & Siripruchyanan, M. (2006). Current controlled CDTA (CCCDTA) based- novel floating and grounded inductance simulators. In International symposium on communications and information technologies (Vols. 1–3, pp. 1216–1219).

  32. Biolek, D. (2003). CDTA—Building block for current-mode analog signal processing. In Proceedings of the ECCTD’03 (Vol. III, pp. 397–400).

  33. Uygur, A., & Kuntman, H. (2007). Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs. AEU—International Journal of Electronics and Communications, 61(5), 320–328.

    Google Scholar 

  34. Kacar, F., & Kuntman, H. H. (2011). A new, improved CMOS realization of CDTA and its filter applications. Turkish Journal of Electrical Engineering and Computer Sciences, 19(4), 631–642.

    Google Scholar 

  35. Xu, J., Wang, C. H., & Jin, J. (2013). Current differencing cascaded transconductance amplifier (CDCTA) and Its applications on current-mode nth-order filters. Circuits Systems and Signal Processing, 32(5), 2047–2063.

    Article  MathSciNet  Google Scholar 

  36. Pankiewicz, B., Szczepanski, S., & Wojcikowski, M. (2014). Bulk linearized CMOS differential pair transconductor for continuous-time OTA-C filter design. Bulletin of the Polish Academy of Sciences-Technical Sciences, 62(1), 77–84.

    Article  Google Scholar 

  37. Uygur, A., & Kuntman, H. (2014). A very compact, 0.4 V DTMOS CCII employed in an audio-frequency filter. Analog Integrated Circuits and Signal Processing, 81(1), 89–98.

    Article  Google Scholar 

  38. Summart, S., Thongsopa, C., & Jaikla, W. (2012). OTA based current-mode sinusoidal quadrature oscillator with non-interactive control. Przeglad Elektrotechniczny, 88(7A), 14–17.

    Google Scholar 

  39. Sotner, R., Hrubos, Z., Herencsar, N., Jerabek, J., Dostal, T., & Vrba, K. (2014). Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits Systems and Signal Processing, 33(1), 1–35.

    Article  Google Scholar 

  40. Sotner, R., Jerabek, J., Herencsar, N., Vrba, K., & Dostal, T. (2015). Features of multi-loop structures with OTAs and adjustable current amplifier for second-order multiphase/quadrature oscillators. AEU—International Journal of Electronics and Communications, 69(5), 814–822.

    Google Scholar 

  41. Keskin, A. U., Biolek, D., Hancioglu, E., & Biolkova, V. (2006). Current-mode KHN filter employing current differencing transconductance amplifiers. AEU—International Journal of Electronics and Communications, 60(6), 443–446.

    Google Scholar 

  42. Biolek, D., Hancioglu, E., & Keskin, A. U. (2008). High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEU—International Journal of Electronics and Communications, 62(2), 92–96.

    Google Scholar 

  43. Khateb, F., & Biolek, D. (2011). Bulk-driven current differencing transconductance amplifier. Circuits Systems and Signal Processing, 30(5), 1071–1089.

    Article  Google Scholar 

  44. Tangsrirat, W., Klahan, K., Dumawipata, T., & Surakampontorn, W. (2006). Low-voltage NMOS-based current differencing buffered amplifier and its application to current-mode ladder filter design. International Journal of Electronics, 93(11), 777–791.

    Article  Google Scholar 

  45. Kaewdang, K., & Surakampontorn, W. (2008). A wide tunable range CMOS OTA. In 5th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON 2008).

  46. Wang, Z. (1990). 2-MOSFET transresistor with extremely low distortion for output reaching supply voltages. Electronics Letters, 26(13), 951–952.

    Article  Google Scholar 

  47. Bode, H. W. (1945). Network analysis and feedback amplifier design. Princeton, NJ: Van Nostrand.

  48. Thongdit, P., Kunto, T., & Prommee, P. (2015). OTA high pass filter-based multiphase sinusoidal oscillator. In IEEE international conference on telecommunications and signal processing.

  49. Prommee, P., & Somdunyakanok, M. (2010). Current-mode multiphase sinusoidal oscillator based on log-domain filtering. In International conference on electrical engineering/electronics computer telecommunications and information technology, 2427.

  50. Prommee, P., Sra-Ium, N., & Dejhan, K. (2010). High-frequency log-domain current-mode multiphase sinusoidal oscillator. IET Circuits, Devices and Systems, 4(5), 440–448.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61274020) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 15K027). The authors would like to thank the engineers Guorong Shen and Yuan Cai in Integrated Circuit Technology and Industry Promotion Center in Shanghai for the fabrication of the chips. The authors also would like to thank the engineer Guangwu Wang in Shaoguang Semiconductor Co., Ltd in Changsha for the measurements and the valuable suggestion and discussion of the proposed circuits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wang, C., Sun, J. et al. A wideband linear tunable CDTA and its application in field programmable analogue array. Analog Integr Circ Sig Process 88, 465–483 (2016). https://doi.org/10.1007/s10470-016-0772-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0772-7

Keywords

Navigation