Skip to main content

Advertisement

Log in

A series–parallel switched capacitor step-up DC–DC converter and its gate-control circuits for over the supply rail switches

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An efficient control of the gate voltage of switches that operate outside the supply range is a problem that occurs in circuits such as step-up DC/DC converters and stimulation circuits for implantable devices. This paper proposes solutions to this problem, using as case study a 3x, ultra low-power, step-up DC/DC converter with series–parallel architecture. The proposed gate control strategy minimizes the gate swing of the switches and recycles the gate charge in one of the cases, thus reducing the energy spent in driving the switch. The designed converter achieves an 81 % simulated efficiency (including all the required signal generation, except for the feedback loop) at \(V_{in}=400\) mV and \(5\;\upmu\)A load current and operates down to \(V_{in}=200\) mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ramadass, Y. K., & Chandrakasan, A. P. (2011). A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE Journal of Solid-State Circuits, 46(1), 333–341.

    Article  Google Scholar 

  2. Chen, P.H., Ishida, K., Okuma, Y., Ryu, Y., Takamiya, M., & Sakurai, T. (2012). A 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester. In IEEE 17th Asia and South Pacific Design Automation Conference (January 2012) (pp. 469–470).

  3. Himes, C., Carlson, E., Ricchiuti, R., Otis, B., & Parviz, B. (2010). Ultralow voltage nanoelectronics powered directly, and solely, from a tree. IEEE Transactions on Nanotechnology, 9(1), 2–5.

    Article  Google Scholar 

  4. Shih, Y. C., Shen, T., & Otis, B. P. (2011). A 2.3 \(\mu W\) wireless intraocular pressure/temperature monitor. IEEE Journal of Solid-State Circuits, 46(11), 2592–2601.

    Article  Google Scholar 

  5. Kimball, J., Flowers, T., & Chapman, P. (2004). Low-input-voltage, low-power boost converter design issues. IEEE Power Electronics Letters, 2(3), 96–99.

    Article  Google Scholar 

  6. Carlson, E. J., Strunz, K., & Otis, B. P. (2010). A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 45(4), 741–750.

    Article  Google Scholar 

  7. Chen, P.H., Ishida, K., Ikeuchi, K., Zhang, X., Honda, K., Okuma, Y., Ryu, Y., Takamiya, M., & Sakurai, T. (2011) A 95mV-startup step-up converter with \(V_{TH}\)-tuned oscillator by fixed-charge programming and capacitor pass-on scheme. In IEEE International Solid-State Circuits Conference (February 2011) (pp. 216–218).

  8. Dickson, J. (1976). On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE Journal of Solid-State Circuits, 11(3), 374–378.

    Article  Google Scholar 

  9. Shih, Y. C., & Otis, B. P. (2011). An inductorless DC-DC converter for energy harvesting with a 1.2\(\mu W\) bandgap-referenced output controller. IEEE Transactions on Circuits and Systems II, 58(12), 832–836.

    Article  Google Scholar 

  10. Ulaganathan, C., Blalock, B.J., Holleman, J., & Britton, C.L. (2012). An ultra-low voltage self-startup charge pump for energy harvesting applications. In IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS) (August 2012) (pp. 206–209).

  11. Jingjing, C., Chun, Z., Zhongqi, L., Ziqiang, W., & Zhihua, W. (2009). Ultra-low-voltage low-power charge pump for solar energy harvesting systems. In IEEE International Conference on Communications, Circuits and Systems (July 2009) (pp. 674–677).

  12. Wu, J.-T., & Chang, K.-L. (1998). MOS charge pumps for low-voltage operation. IEEE Journal of Solid-State Circuits, 33(4), 592–597.

    Article  MathSciNet  Google Scholar 

  13. Doms, I., Merken, P., Van Hoof, C., & Mertens, R. P. (2009). Capacitive power management circuit for micropower thermoelectric generators with a 1.4 \(\mu A\) controller. IEEE Journal of Solid-State Circuits, 44(10), 2824–2833.

    Article  Google Scholar 

  14. Myono, T., Uemoto, A., Kawai, S., Nishibe, E., Kikuchi, S., Iijima, T., et al. (2001). High-efficiency charge-pump circuits with large current output for mobile equipment applications. IEICE Transactions on Electronics, 84, 1602–1611.

    Google Scholar 

  15. Chang, Y. H., & Kuo, S. Y. (2013). A gain/efficiency-improved serial-parallel switched-capacitor step-up DC-DC converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(10), 2799–2809.

    Article  MathSciNet  Google Scholar 

  16. Beck, Y., & Singer, S. (2011). Capacitive transposed series-parallel topology with fine tuning capabilities. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(1), 51–61.

    Article  MathSciNet  Google Scholar 

  17. Zhang, R., Huang, Z., & Inoue, Y. (2009). A low breakdown-voltage charge pump based on Cockcroft-Walton structure. In IEEE 8th International Conference on ASIC (October 2009) (pp. 328–331).

  18. Ueno, F., Inoue, T., Oota, I., & Harada, I. (1991). Emergency power supply for small computer systems. In IEEE International Sympoisum on Circuits and Systems (pp. 1065–1068).

  19. Starzyk, J. (2001). A DC-DC charge pump design based on voltage doublers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(3), 350–359.

    Article  Google Scholar 

  20. Favrat, P., Deval, P., & Declercq, M. (1998). A high-efficiency CMOS voltage doubler. IEEE Journal of Solid-State Circuits, 33(3), 410–416.

    Article  Google Scholar 

  21. AbdElFattah, M., Mohieldin, A., Emira, A., & Sanchez-Sinencio, E. (2011). A low-voltage charge pump for micro scale thermal energy harvesting. In IEEE International Symposium on Industrial Electronics (June 2011) (pp. 76–80).

  22. Palumbo, G., & Pappalardo, D. (2010). Charge pump circuits: An overview on design strategies and topologies. IEEE Circuits and Systems Magazine, 10(1), 31–45.

    Article  Google Scholar 

  23. Seeman, M. D., & Sanders, S. R. (2008). Analysis and optimization of switched-capacitor DC-DC converters. IEEE Transactions on Power Electronics, 23(2), 841–851.

    Article  Google Scholar 

  24. Wayne, D. (1995). Low voltage low power design techniques for medical devices. In R. Plassche, W. Sansen, & J. Huijsing (Eds.), Analog circuit design (pp. 105–126). New York: Springer.

    Chapter  Google Scholar 

  25. Silveira, F., & Flandre, D. (2004). Low power analog CMOS for cardiac pacemakers. Boston: Springer.

    Book  Google Scholar 

  26. Klaassen, E. (2011). Cardiac rhythm management ICs. In H.J. Yoo, C. van Hoof (Eds.) Bio-Medical CMOS ICs pp. 421–451.

  27. Su F., Ki, W.-H., & Tsui, C-Y. (2005). Gate control strategies for high efficiency charge pumps. In IEEE International Symposium on Circuits and Systems (pp. 1907–1910).

  28. Wang, C.-C., & Jiin-Chuan, W. (1997). Efficiency improvement in charge pump circuits. IEEE Journal of Solid-State Circuits, 32(6), 852–860.

    Article  Google Scholar 

  29. Feng, S., & Ki, W.-H. (2008). Component-efficient multiphase switched-capacitor DC-DC converter with configurable conversion ratios for LCD driver applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(8), 753–757.

    Article  Google Scholar 

  30. Eguchi, K., Zhu, H., Ueno, F., & Tabata, T. (2003). Design of a step-up/step-down SC DC-DC converter with series-connected capacitors. In Proceedings of the 2003 International Symposium on Circuits and Systems. ISCAS ’03. Volume 3, IEEE III-300-III-303.

  31. Abdelaziz, S., Radwan, A.G., Eladawy, A., Mohieldin, A.N., & Soliman, A.M. (2012). A low start-up voltage charge pump for energy harvesting applications. In International Conference on Engineering and Technology (ICET) (October 2012) (pp. 1–5).

Download references

Acknowledgments

The authors would like to thank the financial support of ANII (INI_X_2011_1_4088 and 4078), CSIC and CAP, Universidad de la República.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Pérez-Nicoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Nicoli, P., Lisboa, P.C., Veirano, F. et al. A series–parallel switched capacitor step-up DC–DC converter and its gate-control circuits for over the supply rail switches. Analog Integr Circ Sig Process 85, 37–45 (2015). https://doi.org/10.1007/s10470-015-0573-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0573-4

Keywords

Navigation