Skip to main content
Log in

Realizations of mutative 4-ports and their applications to memstor simulations

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, in addition to the universal 4-port mutator circuit introduced earlier with an adder and a subtractor block, two more 4-port mutator circuits, one with plus type (CCII+) and minus type current conveyors (CCII−), the other with a plus type current conveyor (CCII+) and one minus type current follower (CF−) are presented, their port relation matrix and their realization of different memstors are tabulated. How the transfer characteristics of the ideal mutative 4-ports with respect to frequency hold is verified using their transistor level simulations. By terminating properly two ports of the mutative 4-port simulations of a memristor with three different mutators, of a meminductor and of a memcapacitor are presented and compared also with some mutators existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  3. Goknar, I. C., Oncul, F., & Minayi, E. (2013). New memristor applications: AM, ASK, FSK, and BPSK modulators. IEEE Antennas and Propagation Magazine, 55(2), 304–313.

    Article  Google Scholar 

  4. Hyongsuk, K., Sah, M. P., Changju, Y., Seongik, C., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2422–2431.

    Article  MathSciNet  Google Scholar 

  5. Hyongsuk, K., Sah, M. P., Changju, Y., & Chua, L. O. (2010). Memristor-based multilevel memory. In 12th international workshop on cellular nanoscale networks and their applications (CNNA), 3–5 February 2010, pp. 1–6.

  6. Benderli, S., & Wey, T. A. (2009). On PSPICE macromodelling of TiO2 memristors. Electronics Letters, 45(7), 377–379.

    Article  Google Scholar 

  7. Biolek, Z., Biolek, D., & Biolková, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 18(2), 210–214.

    Google Scholar 

  8. Shin, S., & Kang, S.-M. (2010). Compact models for memristors based on charge–flux constitutive relationships. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 590–598.

    Article  Google Scholar 

  9. Rák, A., & Cserey, G. (2010). Macromodeling of the memristor in PSPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 632–636.

    Article  Google Scholar 

  10. Biolek, D., Biolek, Z., & Biolkova, V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. In European conference on circuit theory and design (ECCTD 2009), 23–27 August 2009, pp. 249, 252.

  11. Valsa, J., Biolek, D., & Biolek, Z. (2011). An analogue model of the memristor. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 24(4), 400–408.

    Article  MATH  Google Scholar 

  12. Pershin, Y. V., & Di Ventra, M. (2010). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46(7), 517–518.

    Article  Google Scholar 

  13. Pershin, Y. V., & Di Ventra, M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47(4), 243–244.

    Article  Google Scholar 

  14. Biolek, D., & Biolkova, V. (2010). Mutator for transforming memristor into memcapacitor. Electronics Letters, 46(21), 1428–1429.

    Article  Google Scholar 

  15. Pershin, Y. V., & Di Ventra, M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47(4), 243–244.

    Article  Google Scholar 

  16. Biolek, D., Biolkova, V., & Kolka, Z. (2010). Mutators simulating memcapacitors and meminductors. In IEEE Asia Pacific conference on circuits and systems (APCCAS), 6–9 December 2010, pp. 800, 803.

  17. Biolek, D., Bajer, J., Biolkova, V., & Kolka, Z. (2011). Mutators for transforming nonlinear resistor into memristor. In Proceedings of the ECCTD ‘11, 29–31 August 2011, pp. 488–491.

  18. Minaei, S., Goknar, I. C., Yildiz, M., & Yuce, E. Memstor, memstance simulations via a versatile 4-port built with new adder and subtractor circuits. International Journal of Electronics. doi:10.1080/00207217.2014.942890.

  19. Yuce, E., & Minaei, S. (2009). On the realization of simulated inductors with reduced parasitic impedance effects. Circuits, Systems and Signal Processing, 28(3), 451–465.

    Article  Google Scholar 

  20. Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 30, 661–675.

    Article  MATH  Google Scholar 

  21. Sedra, S., & Smith, K. C. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Article  Google Scholar 

  22. Yildiz, M., Minaei, S., & Ozoguz, S. Linearly weighted classifier circuit. In Joint IEEE north-east workshop on circuits and systems and TAISA conference NEWCAS-TAISA ‘09, 28 June–1 July 2009, pp. 1–4.

  23. Minayi, E., & Goknar, I. C. (2013). Realization of a 4-port generalized mutator and its application to memstor 1 simulations. In 8th international conference on electrical and electronics engineering (ELECO), 28–30 November 2013, pp. 5–8.

  24. Minayi, E. (2014). Applications of 4-port generalized mutators to memstor simulations. MSc thesis, Institute of Technology, Dogus University.

  25. http://www.analog.com/en/all-operational-amplifiers-op-amps/operational-amplifiers-op-amps/ad844/products/product.html.

  26. http://www.analog.com/en/precision-op-amps/high-supply-voltage-amplifiers/ad826/products/product.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İzzet Cem Göknar.

Additional information

A generic name coined to represent the family of memristors, meminductors, memcapacitors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göknar, İ.C., Minayi, E. Realizations of mutative 4-ports and their applications to memstor simulations. Analog Integr Circ Sig Process 81, 29–42 (2014). https://doi.org/10.1007/s10470-014-0354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0354-5

Keywords

Navigation