Skip to main content
Log in

Some Absolute Properties of A-Computable Numberings

  • Published:
Algebra and Logic Aims and scope

For an arbitrary set A of natural numbers, we prove the following statements: every finite family of A-computable sets containing a least element under inclusion has an Acomputable universal numbering; every infinite A-computable family of total functions has (up to A-equivalence) either one A-computable Friedberg numbering or infinitely many such numberings; every A-computable family of total functions which contains a limit function has no A-computable universal numberings, even with respect to Areducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Badaev and S. S. Goncharov, “Rogers semilattices of families of arithmetic sets,” Algebra and Logic, 40, No. 5, 283-291 (2001).

    Article  MathSciNet  Google Scholar 

  2. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Elementary theories for Rogers semilattices,” Algebra and Logic, 44, No. 3, 143-147 (2005).

    Article  MathSciNet  Google Scholar 

  3. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy.” Algebra and Logic, 45, No. 6, 361-370 (2006).

    Article  MathSciNet  Google Scholar 

  4. S. A. Badaev and S. S. Goncharov, “Generalized computable universal numberings,” Algebra and Logic, 53, No. 5, 355-364 (2014).

    Article  MathSciNet  Google Scholar 

  5. S. A. Badaev and S. Yu. Podzorov, “Minimal coverings in the Rogers semilattices of \( {\varSigma}_n^0 \)-computable numberings,” Sib. Math. J., 43, No. 4, 616-622 (2002).

    Article  Google Scholar 

  6. S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra and Logic, 36, No. 6, 359-369 (1997).

    Article  MathSciNet  Google Scholar 

  7. S. Yu. Podzorov, “Initial segments in Rogers semilattices of \( {\varSigma}_n^0 \)-computable numberings,” Algebra and Logic, 42, No. 2, 121-129 (2003).

    Article  MathSciNet  Google Scholar 

  8. S. Yu. Podzorov, “The limit property of the greatest element in the Rogers semilattice,” Math. Trudy, 7, No. 2, 98-108 (2004).

    MathSciNet  MATH  Google Scholar 

  9. S. Yu. Podzorov, “Local structure of Rogers semilattices of \( {\varSigma}_n^0 \)-computable numberings,” Algebra and Logic, 44, No. 2, 82-94 (2005).

    Article  MathSciNet  Google Scholar 

  10. M. Kh. Faizrakhmanov, “Universal generalized computable numberings and hyperimmunity,” Algebra and Logic, 56, No. 4, 337-347 (2017).

    Article  MathSciNet  Google Scholar 

  11. S. A. Badaev and S. S. Goncharov, “Theory of numberings: Open problems,” in Computability Theory and Its Applications, Current Trends and Open Problems, Cont. Math., 257, S. Cholak et al. (Eds.), Am. Math. Soc., Providence, RI (2000), pp. 23-38.

  12. S. A. Badaev and S. S. Goncharov, “Computability and numberings,” in New Computational Paradigms. Changing Conceptions of What Is Computable, S. B. Cooper, B. Lowe, and A. Sorbi (Eds.), Springer, New York (2008), pp. 19-34.

    Google Scholar 

  13. S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, and A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (Eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 45-77.

    Chapter  Google Scholar 

  14. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Completeness and universality of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (Eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 11-44.

    Chapter  Google Scholar 

  15. Yu. L. Ershov, Theory of Numerations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  16. Yu. L. Ershov, “Theory of numberings,” in Handbook of Computability Theory, Stud. Log. Found. Math., 140, North-Holland, Amsterdam (1999), pp. 473-503.

    Chapter  Google Scholar 

  17. S. S. Marchenkov, “The computable enumerations of families of general recursive functions,” Algebra and Logic, 11, No. 5, 326-336 (1972).

    Article  Google Scholar 

  18. A. I. Mal’tsev, “Sets with complete numberings,” Algebra Logika, 2, No. 2, 4-29 (1963).

  19. A. I. Mal’tsev, “Positive and negative enumerations,” Dokl. Akad. Nauk SSSR, 160, No. 2, 278-280 (1969).

    MathSciNet  Google Scholar 

  20. Yu. L. Ershov, “Enumeration of families of general recursive functions,” Sib. Math. J., 8, No. 5, 771-778 (1967).

    Article  Google Scholar 

  21. A. A. Issakhov, “Ideals without minimal elements in Rogers semilattices,” Algebra and Logic, 54, No. 3, 197-203 (2015).

    Article  MathSciNet  Google Scholar 

  22. S. A. Badaev, “On computable enumerations of the families of total recursive functions,” Algebra and Logic, 16, No. 2, 83-98 (1977).

    Article  MathSciNet  Google Scholar 

  23. S. S. Goncharov, “Computable single-valued numerations,” Algebra and Logic, 19, No. 5, 325-356 (1980).

    Article  Google Scholar 

  24. S. S. Goncharov, “Positive numerations of families with one-valued numerations,” Algebra and Logic, 22, No. 5, 345-350 (1983).

    Article  Google Scholar 

  25. S. S. Goncharov, “A family with a unique univalent but not least numeration,” Tr. Inst. Mat. SO RAN, 8, 42-58 (1988).

  26. S. S. Goncharov, “Positive computable numberings,” Dokl. Akad. Nauk, 332, No. 2, 142/143 (1993).

  27. S. S. Goncharov, “A unique positive enumeration.” Sib. Adv. Math., 4, No. 1, 52-64 (1994).

    MathSciNet  MATH  Google Scholar 

  28. Yu. D. Korol’kov, “Families of general recursive functions with a finite number of limit points,” Algebra and Logic, 17, No. 2, 120-126 (1978).

    Article  MathSciNet  Google Scholar 

  29. Yu. D. Korol’kov, “Families of general recursive functions without isolated points,” Mat. Zametki, 26, No. 5, 747-755 (1979).

    MathSciNet  Google Scholar 

  30. Yu. D. Korol’kov, “On the reducibility of index sets of families of general recursive functions,” Sib. Mat. Zh., 23, No. 1, 190-193 (1982).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Badaev or A. A. Issakhov.

Additional information

*Supported by the Science Committee of the Republic of Kazakhstan, grant No. AP05132349.

Translated from Algebra i Logika, Vol. 57, No. 4, pp. 426-447, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badaev, S.A., Issakhov, A.A. Some Absolute Properties of A-Computable Numberings. Algebra Logic 57, 275–288 (2018). https://doi.org/10.1007/s10469-018-9499-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-018-9499-0

Keywords

Navigation