Skip to main content
Log in

Degrees of Autostability for Prime Boolean Algebras

  • Published:
Algebra and Logic Aims and scope

We look at the concept of algorithmic complexity of isomorphisms between computable copies of Boolean algebras. Degrees of autostability are found for all prime Boolean algebras. It is shown that for any ordinals α and β with the condition 0 ≤ α ≤ β ≤ ω, there is a decidable model for which 0(α) is a degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability. It is proved that for any nonzero ordinal β ≤ ω, there is a decidable model for which there is no degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math. Log., 49, No. 1, 51-67 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. B. F. Csima, J. N. Y. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Form. Log., 54, No. 2, 215-231 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. S. Goncharov, “Degrees of autostability relative to strong constructivizations,” Trudy MIAN, 274, 119-129 (2011).

    MathSciNet  MATH  Google Scholar 

  4. R. Miller, “d-Computable categoricity for algebraic fields,” J. Symb. Log., 74, No. 4, 1325-1351 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Miller and A. Shlapentokh, “Computable categoricity for algebraic fields with splitting algorithms,” Trans. Am. Math. Soc., 367, No. 6, 3955-3980 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Fokina, A. Frolov, and I. Kalimullin, “Categoricity spectra for rigid structures,” Notre Dame J. Form. Log., 57, No. 1, 45-57 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. A. Bazhenov, I. Sh. Kalimullin, and M. M. Yamaleev, “Degrees of categoricity vs. strong degrees of categoricity,” Algebra and Logic, 55, No. 2, 173-177 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. T. Nurtazin, “Strong and weak constructivizations and computable families,” Algebra and Logic, 13, No. 3, 177-184 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Bazhenov, “Prime model with no degree of autostability relative to strong constructivizations,” in Lect. Notes Comput. Sci., 9136, Springer-Verlag, Berlin (2015), pp. 117-126.

  10. N. A. Bazhenov, “Autostability spectra for Boolean algebras,” Algebra and Logic, 53, No. 6, 502-505 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. S. Goncharov and V. D. Dzgoev, “Autostability of models,” Algebra and Logic, 19, No. 1, 28-36 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras,” J. Symb. Log., 46, No. 3, 572-594 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. A. Bazhenov, “\( {\varDelta}_2^0- \) categoricity of Boolean algebras,” Vestnik NGU, Mat., Mekh., Inf., 13, No. 2, 3-14 (2013).

  14. N. A. Bazhenov, “Degrees of categoricity for superatomic Boolean algebras,” Algebra and Logic, 52, No. 3, 179-187 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. E. Pal’chunov, A. V. Trofimov, and A. I. Turko, “Autostability relative to strong constructivizations of Boolean algebras with distinguished ideals,” Sib. Math. J., 56, No. 3, 490-498 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. A. Bazhenov, “Degrees of autostability relative to strong constructivizations for Boolean algebras,” Algebra and Logic, 55, No. 2, 87-102 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. S. Goncharov, Countable Boolean Algebras and Decidability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).

    Google Scholar 

  18. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  19. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Logic Found. Math., 144, Elsevier, Amsterdam (2000).

    Google Scholar 

  20. S. S. Goncharov and Yu. L. Ershov, Constructive Models, Siberian School of Algebra and Logic [in Russian], Nauch. Kniga, Novosibirsk (1999).

    Google Scholar 

  21. A. Tarski, “Arithmetical classes and types of Boolean algebras,” Bull. Am. Math. Soc., 55, 63 (1949).

    Google Scholar 

  22. Yu. L. Ershov, “Decidability of the elementary theory of distributive structures with relative complements and of the filter theory,” Algebra Logika, 3, No. 3, 17-38 (1964).

    MathSciNet  Google Scholar 

  23. J. B. Remmel, “Recursive Boolean algebras,” in Handbook of Boolean Algebras, Vol. 3, J. D. Monk and R. Bonnet (Eds.), North-Holland, Amsterdam (1989), pp. 1097-1165.

  24. J. Mead, “Recursive prime models for Boolean algebras,” Coll. Math., 41, 25-33 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. S. Goncharov, N. A. Bazhenov, and M. I. Marchuk, “The index set of Boolean algebras autostable relative to strong constructivizations,” Sib. Math. J., 56, No. 3, 394-404 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Ash, J. Knight, M. Manasse, and T. Slaman, “Generic copies of countable structures,” Ann. Pure Appl. Log., 42, No. 3, 195-205 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Chisholm, “Effective model theory vs. recursive model theory,” J. Symb. Log., 55, No. 3, 1168-1191 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  28. C. J. Ash and J. F. Knight, “Pairs of recursive structures,” Ann. Pure Appl. Log., 46, No. 3, 211-234 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu. L. Ershov, Problems of Decidability and Constructive Models [in Russian], Nauka, Moscow (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Bazhenov.

Additional information

*Supported by RFBR, project No. 16-31-60058 mol_a_dk.

**Supported by RFBR (project No. 14-01-00376) and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-6848.2016.1).

Translated from Algebra i Logika, Vol. 57, No. 2, pp. 149-174, March-April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, N.A., Marchuk, M.I. Degrees of Autostability for Prime Boolean Algebras. Algebra Logic 57, 98–114 (2018). https://doi.org/10.1007/s10469-018-9483-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-018-9483-8

Keywords

Navigation