Skip to main content
Log in

Standard Bases for the Universal Associative Conformal Envelopes of Kac–Moody Conformal Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We study the universal enveloping associative conformal algebra for the central extension of a current Lie conformal algebra at the locality level N = 3. A standard basis of defining relations for this algebra is explicitly calculated. As a corollary, we find a linear basis of the free commutative conformal algebra relative to the locality N = 3 on the generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Balinskii, A.A., Novikov, S.P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32, 228–231 (1985)

    MATH  Google Scholar 

  2. Bakalov, B., D’Andrea, A., Kac, V.G.: Theory of finite pseudoalgebras. Adv. Math. 162, 1–140 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bakalov, B., Kac, V.G., Voronov, A.: Cohomology of conformal algebras. Comm. Math. Phys. 200, 561–589 (1999)

    Article  MathSciNet  Google Scholar 

  4. Beilinson, A.A., Drinfeld, V.G.: Chiral Algebras, Amer. Math. Soc. Colloquium Publications, vol. 51. AMS, Providence (2004)

    Google Scholar 

  5. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. 241, 333–380 (1984)

    Article  MathSciNet  Google Scholar 

  6. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  7. Bokut, L.A.: Imbeddings into simple associative algebras (Russian). Algebra i Logika 15, 117–142 (1976)

    MathSciNet  Google Scholar 

  8. Bokut, L.A., Fong, Y., Ke, W.-F.: Composition-diamond lemma for associative conformal algebras. J. Algebra 272, 739–774 (2004)

    Article  MathSciNet  Google Scholar 

  9. Bokut, L.A., Chen, Y.-Q.: Gröbner-Shirshov bases and their calculation. Bull. Math. Sci. 4, 325–395 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bremner, M.R., Dotsenko, V.: Algebraic Operads. An Algorithmic Companion. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  11. Cheng, S.-J., Kac, V.G.: Conformal modules. Asian J. Math. 1, 181–193 (1997)

    Article  MathSciNet  Google Scholar 

  12. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monograps, vol. 88. American Mathematical Society, Providence (2001)

    Google Scholar 

  13. Gelfand, I.M., Dorfman, I.Ya.: Hamilton operators and associated algebraic structures. Funct. Anal. Appl. 13(4), 13–30 (1979)

    Google Scholar 

  14. Golenishcheva-Kutuzova, M., Kac, V.G.: Γ-conformal algebras. J. Math. Phys. 39, 2290–2305 (1998)

    Article  MathSciNet  Google Scholar 

  15. Hong, Y., Wu, Z.: Simplicity of quadratic Lie conformal algebras. Comm. Algebra 45(1), 141–150 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kac, V.G.: Vertex Algebras for Beginners, 2nd edn., University Lecture Series, vol. 10. American Mathematical Society, Providence (1998)

    Google Scholar 

  17. Kang, S.-J., Lee, K.-H.: Gröbner—Shirshov bases for representation theory. J. Korean Math. Soc. 37, 55–72 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Kolesnikov, P.S.: Conformal algebras in the context of linear algebraic groups. In: Silvestrov, S et al. (eds.) Generalized Lie Theory in Mathematics, Physics and Beyond, pp. 235–246. Springer, Berlin (2009)

  19. Kolesnikov, P.S.: Graded associative conformal algebras of finite type. Algebras and Repr. Theory 16(6), 1521–1539 (2013)

    Article  MathSciNet  Google Scholar 

  20. Kolesnikov, P.S.: Gröbner–Shirshov bases for associative conformal algebras with arbitrary locality function. In: Shum, K.P. et al. (eds.) New Trends in Algebra and Combinatorics, Proceedings of the 3rd International Congress in Algebra and Combinatorics, pp. 255–267. World Scientific (2020)

  21. Kolesnikov, P.S.: Universal enveloping Poisson conformal algebras. Int. J. Alg. Comp. 30(5), 1015–1034 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kolesnikov, P.S., Kozlov, R.A., Panasenko, A.S.: Quadratic Lie conformal superalgebras related to Novikov superalgebras. arXiv:1912.03943v1

  23. Newman, M.H.A.: On theories with a combinatorial definition of ‘equivalence’. Ann. Math. 43, 223–243 (1942)

    Article  MathSciNet  Google Scholar 

  24. Ni, L., Chen, Y.-Q.: A new composition-diamond lemma for associative conformal algebras. J. Algebra App. 16, 1750094–1–1750094-28 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Roitman, M.: On free conformal and vertex algebras. J. Algebra 217, 496–527 (1999)

    Article  MathSciNet  Google Scholar 

  26. Roitman, M.: Universal enveloping conformal algebras. Sel. Math., New Ser. 6, 319–345 (2000)

    Article  MathSciNet  Google Scholar 

  27. Xu, X.: Quadratic conformal superalgebras. J. Algebra 231, 1–38 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the Mathematical Center in Akademgorodok (agreement 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Kolesnikov.

Additional information

Presented by: Alistair Savage

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by Mathematical Center in Akademgorodok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, P.S., Kozlov, R.A. Standard Bases for the Universal Associative Conformal Envelopes of Kac–Moody Conformal Algebras. Algebr Represent Theor 25, 847–867 (2022). https://doi.org/10.1007/s10468-021-10050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-021-10050-0

Keywords

Mathematics Subject Classification (2010)

Navigation