Skip to main content
Log in

Complete Intersection Hom Injective Dimension

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We introduce and investigate a new injective version of the complete intersection dimension of Avramov, Gasharov, and Peeva. It is like the complete intersection injective dimension of Sahandi, Sharif, and Yassemi in that it is built using quasi-deformations. Ours is different, however, in that we use a Hom functor in place of a tensor product. We show that (a) this invariant characterizes the complete intersection property for local rings, (b) it fits between the classical injective dimension and the G-injective dimension of Enochs and Jenda, (c) it provides modules with Bass numbers that are bounded by polynomials, and (d) it improves a theorem of Peskine, Szpiro, and Roberts (Bass’ conjecture).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, M., Buchsbaum, D. A.: Homological dimension in local rings. Trans. Amer. Math. Soc. 85, 390–405 (1957). MR 0086822 (19,249d)

    Article  MathSciNet  Google Scholar 

  2. Avramov, L. L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71, 129–155 (1991). MR 93g:18017

    Article  MathSciNet  Google Scholar 

  3. Avramov, L. L.: Locally Gorenstein homomorphisms. Amer. J. Math. 114(5), 1007–1047 (1992). MR 1183530 (93i:13019)

    Article  MathSciNet  Google Scholar 

  4. Avramov, L. L.: Ring homomorphisms and finite Gorenstein dimension. Proc London Math. Soc. (3) 75(2), 241–270 (1997). MR 98d:13014

    Article  MathSciNet  Google Scholar 

  5. Avramov, L. L., Gasharov, V. N., Peeva, I. V.: Complete intersection dimension. Inst. Hautes Études Sci. Publ. Math. (1997) 86, 67–114 (1998). MR 1608565 (99c:13033)

    Article  Google Scholar 

  6. Avramov, L. L., Iyengar, S., Miller, C.: Homology over local homomorphisms. Amer. J. Math. 128(1), 23–90 (2006). MR 2197067

    Article  MathSciNet  Google Scholar 

  7. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963). MR 0153708 (27 #3669)

    Article  MathSciNet  Google Scholar 

  8. Chouinard, II, L. G.: On finite weak and injective dimension. Proc. Amer. Math. Soc. 60(1976), 57–60 (1977). MR 0417158

  9. Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Amer. Math. Soc. 353(5), 1839–1883 (2001). MR 2002a:13017

    Article  MathSciNet  Google Scholar 

  10. Christensen, L. W., Foxby, H. -B., Holm, H.: Beyond totally reflexive modules and back: a survey on Gorenstein dimensions, Commutative algebra—Noetherian and non-Noetherian perspectives, pp 101–143. Springer, New York (2011). MR 2762509

    Book  Google Scholar 

  11. Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions—a functorial description with applications. J. Algebra 302(1), 231–279 (2006). MR 2236602

    Article  MathSciNet  Google Scholar 

  12. Christensen, L. W., Köksal, F.: Injective modules under faithfully flat ring extensions. Proc. Amer. Math. Soc. 144(3), 1015–1020 (2016). MR 3447655

    Article  MathSciNet  Google Scholar 

  13. Christensen, L. W., Sather-Wagstaff, S.: Transfer of G,orenstein dimensions along ring homomorphisms. J. Pure Appl. Algebra 214(6), 982–989 (2010). MR 2580673

    Article  MathSciNet  Google Scholar 

  14. Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220(4), 611–633 (1995). MR 1363858 (97c:16011)

    Article  MathSciNet  Google Scholar 

  15. Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31(1972), 267–284 (1973). MR 48 #6094

    MathSciNet  MATH  Google Scholar 

  16. Foxby, H.-B.: Injective modules under flat base change. Proc. Amer. Math. Soc. 50, 23–27 (1975). MR 0409439 (53 #13194)

    Article  MathSciNet  Google Scholar 

  17. Foxby, H.-B.: Bounded complexes of flat modules. J. Pure Appl. Algebra 15(2), 149–172 (1979). MR 535182 (83c:13008)

    Article  MathSciNet  Google Scholar 

  18. Frankild, A., Sather-Wagstaff, S.: The set of semidualizing complexes is a nontrivial metric space. J. Algebra 308(1), 124–143 (2007). MR 2290914

    Article  MathSciNet  Google Scholar 

  19. Gelfand, S. I., Manin, Y. I.: Methods of Homological Algebra. Springer, Berlin (1996). MR 2003m:18001

    Book  Google Scholar 

  20. Hartshorne, R.: Residues and Duality Lecture Notes in Mathematics, vol. 20. Springer, Berlin (1966). MR 36 #5145

    Google Scholar 

  21. Jensen, C. U.: On the vanishing of \(\underset {\longleftarrow }{\lim }^{(i)}\). J. Algebra 15, 151–166 (1970). MR 0260839 (41 #5460)

    Article  MathSciNet  Google Scholar 

  22. Mathew, A.: Examples of descent up to nilpotence, preprint. arXiv:1701.01528v1 (2017)

  23. Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck. Inst. Hautes Études Sci. Publ. Math. 42, 47–119 (1973). MR 0374130 (51 #10330)

    Article  Google Scholar 

  24. Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebr. Represent. Theory 17(1), 31–67 (2014). MR 3160712

    Article  MathSciNet  Google Scholar 

  25. Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de “platification” d’un module. Invent. Math. 13, 1–89 (1971). MR 0308104 (46 #7219)

    Article  MathSciNet  Google Scholar 

  26. Roberts, P. C.: Le théorème d’intersection. C. R. Acad. Sci. Paris Sér. I Math. 304(7), 177–180 (1987). MR 880574 (89b:14008)

    MathSciNet  MATH  Google Scholar 

  27. Roberts, P. C.: Intersection theorems, Commutative algebra (Berkeley, CA, 1987), vol. 15, pp 417–436. Springer, New York (1989). MR 1015532

    Google Scholar 

  28. Sahandi, P., Sharif, T., Yassemi, S.: Homological flat dimensions, preprint. arXiv:0709.4078 (2007)

  29. Sather-Wagstaff, S.: Complete intersection dimensions for complexes. J. Pure Appl. Algebra 190(1-3), 267–290 (2004). MR 2043332 (2005i:13022)

    Article  MathSciNet  Google Scholar 

  30. Sather-Wagstaff, S.: Complete intersection dimensions and Foxby classes. J. Pure Appl. Algebra 212(12), 2594–2611 (2008). MR 2452313 (2009h:13015)

    Article  MathSciNet  Google Scholar 

  31. Sather-Wagstaff, S., Wicklein, R.: Adically finite chain complexes. J. Algebra Appl. 16(12), 1750232, 23 (2017). MR 3725092

    Article  MathSciNet  Google Scholar 

  32. Sather-Wagstaff, S.: Support and adic finiteness for complexes. Comm. Algebra 45(6), 2569–2592 (2017). MR 3594539

    Article  MathSciNet  Google Scholar 

  33. Serre, J.-P.: Sur la dimension homologique des anneaux et des modules noethériens, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955 (Tokyo), Science Council of Japan, 1956, pp. 175–189. MR 19,119a

  34. Takahashi, R.: The existence of finitely generated modules of finite Gorenstein injective dimension. Proc. Amer. Math. Soc. 134(11), 3115–3121 (2006). MR 2231892

    Article  MathSciNet  Google Scholar 

  35. Yassemi, S.: Width of complexes of modules. Acta Math. Vietnam. 23(1), 161–169 (1998). MR 1628029 (99g:13026)

    MathSciNet  MATH  Google Scholar 

  36. Yassemi, S.: A generalization of a theorem of Bass. Comm. Algebra 35(1), 249–251 (2007). MR 2287566

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Lars W. Christensen, Mohsen Gheibi, Srikanth B. Iyengar and the anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Totushek.

Additional information

Presented by: Peter Littelmann

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derived Functors

Appendix A: Derived Functors

The first result in this appendix is for use in Theorem 3.6 and Proposition 3.8.

Lemma A.1

Let \(R,S,\widetilde {R},\widetilde {S}\) be commutative noetherian rings (not necessarily local) and consider the following commutative diagram of ring homomorphisms

such that \(\widetilde {S} \cong S\otimes _{R} \widetilde {R}\) and \({\operatorname {Tor}_{i}^{R}}(S,\widetilde {R}) = 0\) for all i > 0. Let \(Y\in \mathcal {D}_{-}(S)\). Then

$$ \operatorname{id}_{\widetilde{R}}(\mathbf{R}\!\operatorname{Hom}_{S}(\widetilde{S},Y))\leq \operatorname{id}_{R}(Y). $$

Proof

In \(\mathcal {D}(R)\), we have isomorphisms

$$ \begin{array}{@{}rcl@{}} \text{\textbf{R}Hom}_{S}({\widetilde{S}}, Y) &\simeq&\text{\textbf{R}Hom}_{S}(S\otimes^{\mathbf{L}}_{R}\widetilde{R}, Y)\\ &\simeq&\text{\textbf{R}Hom}_{R}(\widetilde{R},\text{\textbf{R}Hom}_{S}(S, Y))\\ &\simeq&\text{\textbf{R}Hom}_{R}(\widetilde{R},Y). \end{array} $$

It suffices to show that these isomorphisms respect the \(\widetilde R\)-structure; then the result follows directly since \(\operatorname {id}_{\widetilde R}(\mathbf {R}\!\operatorname {Hom}_{R}(\widetilde {R},Y))\leq \operatorname {id}_{R}(Y)\).

In order to respect the \(\widetilde R\)-structure, fix an S-injective resolution \(Y\xrightarrow \simeq J\) to compute \(\text {\textbf {Rhom}}_{S}({\widetilde {S}}, Y)\). Arguing as in the preceding display, this yields

$$ \begin{array}{@{}rcl@{}} \text{\textbf{Rhom}}_{S}({\widetilde{S}}, Y) \simeq\operatorname{Hom}[S]{\widetilde S}J \cong\operatorname{Hom}{\widetilde{R}}{J}. \end{array} $$

It remains to show that the complex \(\operatorname {Hom}{\widetilde {R}}{J}\) represents \(\mathbf {R}\!\operatorname {Hom}_{S}(\widetilde {R},Y)\) in \(\mathcal {D}(\widetilde R)\). For this, it suffices to show that the injective S-modules Ji are \(\text {\textbf {R}Hom}_{R}(\widetilde {R}, -)\) acyclic, i.e., that \(\operatorname {Ext}_{R}^{i}(\widetilde {R},J_{j})=0\) for all i ≥ 1 and all j. Computing as in the above displays, we find that \(\operatorname {Ext}_{R}^{i}(\widetilde {R},J_{j})\cong \text {Ext}_{S}^{i}(\widetilde {S}, J)_{j}=0\) for all such i and j, where the vanishing comes from the fact that Jj is S-injective. □

Remark A.2

One can also prove Lemma A.1 using differential graded algebra resolutions, but the current proof is more direct.

The next result is proved like Lemma A.1. It is not needed for the results of this paper; however, it is used implicitly in [30, Theorem F].

Lemma A.3

Let \(R,S,\widetilde {R},\widetilde {S}\) be commutative noetherian rings (not necessarily local) and consider the following commutative diagram of ring homomorphisms

such that \(\widetilde {S} \cong S\otimes _{R} \widetilde {R}\) and \({\operatorname {Tor}_{i}^{R}}(S,\widetilde {R}) = 0\) for all i > 0. Let \(Y\in \mathcal {D}_{+}(S)\). Then

$$ \operatorname{fd}_{\widetilde{R}}(\widetilde{S} \otimes^{\mathbf{L}}_{S} Y)\leq \operatorname{fd}_{R}(Y). $$

The following result is a slight improvement on [22, Theorem 3.13]. Our proof is similar to that of op. cit., but we include it here for the sake of completeness.

Proposition A.4

Let R be a commutative noetherian ring (not necessarily local) with \(d = \dim (R) < \infty \). Let R be a faithfully flat R-algebra. Then R is in the thick subcategory T of \(\mathcal {D}(R)\) generated by Add(R).

Proof

  1. Claim 1:

    For all projective R-modules P and all n ≥ 1 the tensor product PR(R)n is in T. In particular, for all n ≥ 1, we have (R)nT.

Proof of Claim 1. We argue by induction on n. For the base case n = 1, note that P is a summand of R(B) for some set B. By definition we have R(B)RR≅(R)(B) ∈ Add(R). Thus the summand PRR is also in \(\operatorname {Add}(R') \subseteq T\).

Induction step: Assume that n ≥ 1 and that PR(R)nT for all P. Fact 2.1 implies that pd R(R) ≤ d. This provides a bounded projective resolution

$$ 0\to P_{d}\to\cdots\to P_{0}\to R'\to 0 $$
(A.4.2)

where each projective R-module Pi is a summand of a free R-module \(R^{(B_{i})}\) with basis Bi. Apply \(-\otimes _{R}(P\otimes _{R} (R^{\prime })^{\otimes n})\) to the resolution (A.4.2). As \((R^{\prime })^{\otimes n}\) is flat, so is \(P\otimes _{R} (R')^{\otimes n}\). This yields an exact sequence

$$ 0\to P_{d} \otimes_{R} P \otimes_{R} (R')^{\otimes n} \to\cdots\to P_{0} \otimes_{R} P\otimes (R')^{\otimes n} \to P\otimes_{R} (R')^{\otimes (n+1)}\to 0. $$

Our induction hypothesis implies PiRPR(R)nT for all i. As T is thick, the above exact sequence implies that PR(R)⊗(n+ 1)T. This establishes Claim 1.

Set M = R/R, which is flat over R since R is faithfully flat. Next set I = Σ− 1M so there is a natural exact triangle in \(\mathcal {D}(R)\)

$$ I\xrightarrow{\phi} R\to R'\to. $$
(A.4.3)
  1. Claim 2:

    For all m, n ≥ 1 we have (R)mRInT. In particular, RRInT for all n ≥ 1.

Proof of Claim 2. We argue by induction on n. For the base case n = 1, apply the functor (R)mR − to the triangle (A.4.3) and use the flatness of (R)m to get the exact triangle

$$ {(R')^{\otimes m}}\otimes_{R}I\to (R')^{\otimes m}\to(R')^{\otimes (m+1)}\to. $$

Since (R)m and (R)⊗(m+ 1) are in T by Claim 1, so is (R)mRI.

The induction step is similar to the base case. Assume that n ≥ 1 and that (R)mRInT for all m ≥ 1. Apply ((R)mRIn) − to the triangle (A.4.3) and use the flatness of (R)mRMn to get the exact triangle

$$ (R')^{\otimes m}\otimes_{R}I^{\otimes (n+1)}\to (R')^{\otimes m}\otimes_{R}I^{\otimes n}\to(R')^{\otimes (m+1)}\otimes_{R}I^{\otimes n}\to. $$

Since (R)mRIn and (R)⊗(m+ 1)RIn are in T, so is (R)mRI⊗(n+ 1). This establishes Claim 2.

Recall the morphism ϕ from Eq. A.4.3. For each \(n\in \mathbb {N}\), consider the natural morphism \(I^{\otimes n}\xrightarrow {\phi ^{\otimes n}}R^{\otimes n}\simeq R\) and the induced exact triangle

$$ I^{\otimes n}\xrightarrow{\phi^{\otimes n}} R\to C(n)\to. $$
(A.4.4)
  1. Claim 3:

    For all m ≥ 0 and all n ≥ 1 we have ImRC(n) ∈ T. In particular, C(n) ∈ T for all n ≥ 1.

Proof of Claim 3. We argue by induction on n. For the base case n = 1, compare the triangles (A.4.3) and (A.4.4) to conclude that \({I^{\otimes 0}}\otimes _{R} C(1) \simeq C(1) \simeq R'\in T\). For m ≥ 1 it follows that \({I^{\otimes m}}\otimes _{R}{C(1)}\simeq {I^{\otimes m}}\otimes _{R}{R'}\in T\) by Claim 2.

Induction step: Assume that n ≥ 1 and that ImRC(n) ∈ T for all m ≥ 0. The morphism ϕ⊗(n+ 1) decomposes as the composition of the next morphisms

$$I^{\otimes (n+1)}\xrightarrow{\phi^{\otimes n}\otimes I}R\otimes_{R} I\xrightarrow\cong I\xrightarrow{\phi}R.$$

Apply ⊗RI to the triangle (A.4.4) to produce the next exact triangle

$$ I^{\otimes (n+1)}\xrightarrow{\phi^{\otimes n}\otimes I} R \otimes_{R} I\to {C(n)}\otimes_{R} I\to. $$

The Octahedral Axiom applied to the morphisms ϕnI and ϕ (and their composition ϕ⊗(n+ 1)) yields the next exact triangle.

$$ {C(n)}\otimes_{R} I \to C(n+1) \to C(1) \to $$

Apply −⊗RIm to this triangle to obtain the next one.

$$C(n)\otimes_{R}I^{\otimes (m+1)} \to C(n+1)\otimes_{R}I^{\otimes m} \to C(1)\otimes_{R}I^{\otimes m} \to $$

Since C(n) ⊗RI⊗(m+ 1), C(1) ⊗RImT, we have C(n + 1) ⊗RImT. This establishes Claim 3.

Now we complete the proof. The module M = R/R is flat, hence so is M⊗(d+ 1). Thus, we have pd R(M⊗(d+ 1)) ≤ d and so \(\text {Ext}^{d+1}_{R}(M^{\otimes (d+1)}, R)=0\). It follows that

$$\text{Ext}^{0}_{R}(I^{\otimes (d+1)}, R)\cong \text{Ext}^{0}_{R}(\mathsf{\Sigma}^{-d-1}M^{\otimes (d+1)}, R)\cong\text{Ext}^{d+1}_{R}(M^{\otimes (d+1)}, R)=0.$$

It follows that the homotopy class of the morphism ϕ⊗(d+ 1) is in Ext 0I⊗(d+ 1)R = 0, thus ϕ⊗(d+ 1) is nullhomotopic. It follows that the codomain R is a retract of C(d + 1). Claim 3 implies that C(d + 1) is in T, which is closed under retracts. Therefore we have RT, as desired. □

Our point for including Proposition A.4 is to obtain the next two results for use in Remark 3.2.

Proposition A.5

Continue with the assumptions of Proposition A.4 and let \(X\in \mathcal {D}(R)\) be such that \(\text {\textbf {R}Hom}_{R}(R^{\prime },X)\in \mathcal {D}_{*}(R)\), where ∗∈{+,−, b}. Then for all ZT we have \(\text {\textbf {R}Hom}_{R}(Z,X)\in \mathcal {D}_{*}(R)\).

Proof

By Remark 2.2 we have ZTn for some n ≥ 1. Argue by induction on n.

Base case: n = 1. In this case, Z is a summand of (R)(A) for some A. The condition \(\text {\textbf {R}Hom}_{R}(R^{\prime },X)\in \mathcal {D}_{*}(R)\) implies that

$$\text{\textbf{R}Hom}_{R}((R^{\prime})^{(A)}, X)\simeq\text{\textbf{R}Hom}_{R}(R^{\prime},X))^{A}\in\mathcal{D}_{*}(R).$$

It follows that the summand R HomR(Z, X) of \(\text {\textbf {R}Hom}_{R}((R^{\prime })^{(A)}, X)\) is also in \(\mathcal {D}_{*}(R)\).

Inductive step. Assume that n ≥ 1 and for all ZTn we have \(\text {\textbf {R}Hom}_{R}(Z^{\prime },X)\in \mathcal {D}_{*}(R)\). Let ZTn+ 1. Then Z is a retract of an object \(Y\in \mathcal {D}(R)\) such that there is an exact triangle \(Y'\to Y\to Y^{\prime \prime }\to \) in \(\mathcal {D}(R)\) with YT1 and \(Y^{\prime \prime }\in T_{n}\). Our base case and induction hypothesis imply that \(\text {\textbf {R}Hom}_{R}(Y^{\prime },X),\text {\textbf {R}Hom}_{R}(Y^{\prime \prime },X)\in \mathcal {D}_{*}(R)\). A long exact sequence argument shows that \(\text {\textbf {R}Hom}_{R}(Y,X)\in \mathcal {D}_{*}(R)\). It follows that the retract R HomR(Z, X) must also be in \(\mathcal {D}_{*}(R)\). □

Corollary A.6

Continue with the assumptions of Proposition A.4. Let \(X\in \mathcal {D}(R)\) be such that \(\text {\textbf {R}Hom}_{R}(R^{\prime },X)\in \mathcal {D}_{*}(R)\), where ∗∈{+,−, b}. Then \(X\in \mathcal {D}_{*}(R)\).

Proof

Proposition A.4 implies that RT, so we have \(X\simeq \text {\textbf {R}Hom}_{R}(R,X)\in \mathcal {D}_{*}(R)\) by Proposition A.5. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sather-Wagstaff, S.K., Totushek, J.P. Complete Intersection Hom Injective Dimension. Algebr Represent Theor 24, 149–167 (2021). https://doi.org/10.1007/s10468-019-09938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-019-09938-9

Keywords

Mathematics Subject Classification (2010)

Navigation