Skip to main content
Log in

Kirillov–Reshetikhin Crystals B1, s for \(\widehat {\mathfrak {s}\mathfrak {l}}_{n}\) Using Nakajima Monomials

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We give a realization of the Kirillov–Reshetikhin crystal B1, s using Nakajima monomials for \(\widehat {\mathfrak {s}\mathfrak {l}}_{n}\) using the crystal structure given by Kashiwara. We describe the tensor product \(\bigotimes _{i=1}^{N} B^{1,s_{i}}\) in terms of a shift of indices, allowing us to recover the Kyoto path model. Additionally, we give a model for the KR crystals Br,1 using Nakajima monomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alshuqayr, M., Nakashima, T.: Decomposition theorem for product of fundamental crystals in monomial realization. Preprint, arxiv:1807.11081 (2018)

  2. Bandlow, J., Schilling, A., Thiéry, N.: On the uniqueness of promotion operators on tensor product of type A crystals. J. Algebraic Combinatorics 31, 217–251 (2010). https://doi.org/10.1007/s10801-009-0182-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1989). Reprint of the 1982 original

    MATH  Google Scholar 

  4. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005). https://doi.org/10.1215/S0012-7094-04-12611-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals. Geom. Funct. Anal. Special Volume, Part I, 188–236 (2000). https://doi.org/10.1007/978-3-0346-0422-2_8. GAFA 2000 (Tel Aviv, 1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases. In: Quantum groups, Contemp. Math., vol. 433, pp. 13–88. Amer. Math. Soc., Providence (2007), https://doi.org/10.1090/conm/433/08321

  7. Brubaker, B., Buciumas, V., Bump, D.: A Yang-Baxter equation for metaplectic ice. Commun. Number Theory Phys. arxiv:1604.02206. To appear (2016)

  8. Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, pp. 59–78. Amer. Math. Soc., Providence (1995)

  9. Chari, V., Pressley, A.: Twisted quantum affine algebras. Comm. Math. Phys. 196(2), 461–476 (1998). https://doi.org/10.1007/s002200050431

    Article  MathSciNet  MATH  Google Scholar 

  10. Sage-Combinat community, T.: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008). http://combinat.sagemath.org

  11. Deka, L., Schilling, A.: New fermionic formula for unrestricted Kostka polynomials. J. Combin. Theory Ser. A 113(7), 1435–1461 (2006). https://doi.org/10.1016/j.jcta.2006.01.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Developers, T.S.: Sage Mathematics Software (Version 8.1). The Sage Development Team (2017). http://www.sagemath.org

  13. Di Francesco, P., Kedem, R.: Positivity of the T-system cluster algebra. Electron. J. Combin. 16(1), Research Paper 140,39 (2009)

    Article  MathSciNet  Google Scholar 

  14. Di Francesco, P., Kedem, R.: Quantum Q systems: From cluster algebras to quantum current algebras. Lett. Math. Phys. 107(2), 301–341 (2017). https://doi.org/10.1007/s11005-016-0902-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Francesco, P., Kedem, R.: Difference equations for graded characters from quantum cluster algebra. Transform. Groups 23(2), 391–424 (2018). https://doi.org/10.1007/s00031-018-9480-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15(2), 497–529 (electronic) (2002). https://doi.org/10.1090/S0894-0347-01-00385-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Fourier, G., Okado, M., Schilling, A.: Kirillov-Reshetikhin crystals for nonexceptional types. Adv. Math. 222(3), 1080–1116 (2009). https://doi.org/10.1016/j.aim.2009.05.020

    Article  MathSciNet  MATH  Google Scholar 

  18. Fourier, G., Okado, M., Schilling, A.: Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types. Contemp. Math. 506, 127–143 (2010). https://doi.org/10.1090/conm/506/09938

    Article  MathSciNet  MATH  Google Scholar 

  19. Fourier, G., Schilling, A., Shimozono, M.: Demazure structure inside Kirillov-Reshetikhin crystals. J. Algebra 309(1), 386–404 (2007). https://doi.org/10.1016/j.jalgebra.2006.09.019

    Article  MathSciNet  MATH  Google Scholar 

  20. Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Comm. Math. Phys. 216(1), 23–57 (2001). https://doi.org/10.1007/s002200000323

    Article  MathSciNet  MATH  Google Scholar 

  21. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of \(\mathscr{W}\)-algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, pp. 163–205. Amer. Math. Soc., Providence (1999), https://doi.org/10.1090/conm/248/03823

  22. Frieden, G.: Affine type A geometric crystal on the Grassmannian (2017). Preprint, arxiv:1706.02844

  23. Frieden, G.: The geometric R-matrix for affine crystals of type A (2017). Preprint, arxiv:1706.02844

  24. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae. In: MathPhys odyssey, 2001, Prog. Math. Phys., vol. 23, pp. 205–272. Birkhäuser, Boston (2002)

  25. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on fermionic formula. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, pp. 243–291. Amer. Math. Soc., Providence (1999), https://doi.org/10.1090/conm/248/03826

  26. Hernandez, D.: Algebraic approach to q, t-characters. Adv. Math. 187 (1), 1–52 (2004). https://doi.org/10.1016/j.aim.2003.07.016

    Article  MathSciNet  MATH  Google Scholar 

  27. Hernandez, D.: Kirillov-Reshetikhin conjecture: The general case. Int. Math. Res. Not. IMRN 1, 149–193 (2010). https://doi.org/10.1093/imrn/rnp121

    Article  MathSciNet  MATH  Google Scholar 

  28. Hernandez, D., Leclerc, B.: A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules. J. Eur. Math. Soc. (JEMS) 18(5), 1113–1159 (2016). https://doi.org/10.4171/JEMS/609

    Article  MathSciNet  MATH  Google Scholar 

  29. Hernandez, D., Nakajima, H.: Level 0 monomial crystals. Nagoya Math. J. 184, 85–153 (2006)

    Article  MathSciNet  Google Scholar 

  30. Inoue, R., Lam, T., Pylyavskyy, P.: On the cluster nature and quantization of geometric R-matrices. Publ. Res. Inst. Math. Sci. 55(1), 25–78 (2019). https://doi.org/10.4171/PRIMS/55-1-2

    Article  MathSciNet  MATH  Google Scholar 

  31. James, G., Kerber, A.: The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, vol. 16. Addison-Wesley Publishing Co., Reading (1981). With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson

    Google Scholar 

  32. Jimbo, M., Miwa, T.: Algebraic Analysis of Solvable Lattice Models CBMS Regional Conference Series in Mathematics, vol. 85. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1995)

    Google Scholar 

  33. Jones, B., Schilling, A.: Affine structures and a tableau model for E6 crystals. J. Algebra 324(9), 2512–2542 (2010). https://doi.org/10.1016/j.jalgebra.2010.07.041

    Article  MathSciNet  MATH  Google Scholar 

  34. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  35. Kamnitzer, J., Tingley, P., Webster, B., Weekes, A., Yacobi, O.: Highest weights for truncated shifted Yangians and product monomial crystals. J. Combin. Algebra (2019). arxiv:1511.09131. To appear

  36. Kanakubo, Y., Nakashima, T.: Cluster variables on certain double Bruhat cells of type (u, e) and monomial realizations of crystal bases of type A. SIGMA Symmetry Integrability Geom. Methods Appl. 11 (Paper 033), 32 (2015). https://doi.org/10.3842/SIGMA.2015.033

    Article  MathSciNet  MATH  Google Scholar 

  37. Kang, S.J., Kashiwara, M., Misra, K.C.: Crystal bases of Verma modules for quantum affine Lie algebras. Compositio Math. 92(3), 299–325 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Kang, S.J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. In: Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., vol. 16, pp. 449–484. World Sci. Publ., River Edge (1992)

  39. Kang, S.J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68(3), 499–607 (1992). https://doi.org/10.1215/S0012-7094-92-06821-9

    Article  MathSciNet  MATH  Google Scholar 

  40. Kang, S.J., Kim, J.A., Shin, D.U.: Modified Nakajima monomials and the crystal B(). J. Algebra 308(2), 524–535 (2007). https://doi.org/10.1016/j.jalgebra.2006.09.022

    Article  MathSciNet  MATH  Google Scholar 

  41. Kashiwara, M.: Crystalizing the q-analogue of universal enveloping algebras. Comm. Math. Phys. 133(2), 249–260 (1990)

    Article  MathSciNet  Google Scholar 

  42. Kashiwara, M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991). https://doi.org/10.1215/S0012-7094-91-06321-0

    Article  MathSciNet  MATH  Google Scholar 

  43. Kashiwara, M.: On crystal bases Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, pp. 155–197. Amer. Math. Soc., Providence (1995)

  44. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002). https://doi.org/10.1215/S0012-9074-02-11214-9

    Article  MathSciNet  MATH  Google Scholar 

  45. Kashiwara, M.: Realizations of crystals. In: Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., vol. 325, pp. 133–139. Amer. Math. Soc., Providence (2003), https://doi.org/10.1090/conm/325/05668

  46. Kashiwara, M., Misra, K.C., Okado, M., Yamada, D.: Perfect crystals for \(U_{q(D^{(3)}_{4})}\). J. Algebra 317(1), 392–423 (2007). https://doi.org/10.1016/j.jalgebra.2007.02.021

    Article  MathSciNet  MATH  Google Scholar 

  47. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra 165(2), 295–345 (1994). https://doi.org/10.1006/jabr.1994.1114

    Article  MathSciNet  MATH  Google Scholar 

  48. Kashiwara, M., Nakashima, T., Okado, M.: Affine geometric crystals and limit of perfect crystals. Trans. Amer. Math. Soc. 360(7), 3645–3686 (2008). https://doi.org/10.1090/S0002-9947-08-04341-9

    Article  MathSciNet  MATH  Google Scholar 

  49. Kashiwara, M., Nakashima, T., Okado, M.: Tropical R maps and affine geometric crystals. Represent. Theory 14, 446–509 (2010). https://doi.org/10.1090/S1088-4165-2010-00379-9

    Article  MathSciNet  MATH  Google Scholar 

  50. Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Inst. Hautes Études Sci. Publ. Math. 59, 35–142 (1984)

    Article  MathSciNet  Google Scholar 

  51. Kerov, S.V., Kirillov, A.N., Reshetikhin, N.Y.: Combinatorics, the Bethe ansatz and representations of the symmetric group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193(Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII), 50–64 (1986). https://doi.org/10.1007/BF01247087

    Article  MATH  Google Scholar 

  52. Kim, J.A.: Monomial realization of crystal graphs for \(U_{q(A_{n}^{(1)})}\). Math. Ann. 332(1), 17–35 (2005). https://doi.org/10.1007/s00208-004-0613-3

    Article  MathSciNet  MATH  Google Scholar 

  53. Kim, J.A., Shin, D.U.: Monomial realization of the tensor product of crystals for quantum finite algebras. Comm. Algebra 42(7), 3120–3136 (2014). https://doi.org/10.1080/00927872.2013.781608

    Article  MathSciNet  MATH  Google Scholar 

  54. Kirillov, A.N., Reshetikhin, N.Y.: The Bethe ansatz and the combinatorics of Young tableaux. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 194(Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII), 65–115 (1986). https://doi.org/10.1007/BF01247088

    Article  MATH  Google Scholar 

  55. Kirillov, A.N., Schilling, A., Shimozono, M.: A bijection between Littlewood-Richardson tableaux and rigged configurations. Selecta Math. (N.S.) 8(1), 67–135 (2002). https://doi.org/10.1007/s00029-002-8102-6

    Article  MathSciNet  MATH  Google Scholar 

  56. Kodera, R., Naoi, K.: Loewy series of Weyl modules and the Poincaré polynomials of quiver varieties. Publ. Res. Inst. Math. Sci. 48(3), 477–500 (2012). https://doi.org/10.2977/PRIMS/77

    Article  MathSciNet  MATH  Google Scholar 

  57. Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., Yamada, Y.: Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection. Nuclear Phys. B 740(3), 299–327 (2006). https://doi.org/10.1016/j.nuclphysb.2006.02.005

    Article  MathSciNet  MATH  Google Scholar 

  58. Kus, D.: Realization of affine type A Kirillov-Reshetikhin crystals via polytopes. J. Combin. Theory Ser. A 120(8), 2093–2117 (2013). https://doi.org/10.1016/j.jcta.2013.08.009

    Article  MathSciNet  MATH  Google Scholar 

  59. Kus, D.: Kirillov-Reshetikhin crystals, energy function and the combinatorial R-matrix. J. Algebraic Combin. 43(1), 45–74 (2016). https://doi.org/10.1007/s10801-015-0625-y

    Article  MathSciNet  MATH  Google Scholar 

  60. Kwon, J.H.: RSK correspondence and classically irreducible Kirillov-Reshetikhin crystals. J. Combin. Theory Ser. A 120(2), 433–452 (2013). https://doi.org/10.1016/j.jcta.2012.09.003

    Article  MathSciNet  MATH  Google Scholar 

  61. Lam, T., Pylyavskyy, P.: Affine geometric crystals in unipotent loop groups. Represent. Theory 15, 719–728 (2011). https://doi.org/10.1090/S1088-4165-2011-00410-6

    Article  MathSciNet  MATH  Google Scholar 

  62. Lenart, C., Lubovsky, A.: A generalization of the alcove model and its applications. J. Algebraic Combin. 41(3), 751–783 (2015). https://doi.org/10.1007/s10801-014-0552-3

    Article  MathSciNet  MATH  Google Scholar 

  63. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph. Int. Math. Res. Not. IMRN 7, 1848–1901 (2015). https://doi.org/10.1093/imrn/rnt263

    Article  MathSciNet  MATH  Google Scholar 

  64. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: Quantum Lakshmibai-Seshadri paths and root operators. Adv. Stud. Pure Math. 71, 267–294 (2016)

    Article  MathSciNet  Google Scholar 

  65. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals II. Alcove model, path model, and P = X. Int. Math. Res. Not IMRN. https://doi.org/10.1093/imrn/rnw129 (2016)

  66. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals III: Nonsymmetric Macdonald polynomials at t = 0 and Demazure characters. Transform. Groups, 1–39. https://doi.org/10.1007/s00031-017-9421-1 (2017)

  67. Misra, K.C., Nakashima, T.: Affine geometric crystal of \(A_{n^{(1)}}\) and limit of Kirillov-Reshetikhin perfect crystals. J. Algebra 507, 249–291 (2018). https://doi.org/10.1016/j.jalgebra.2018.03.041

    Article  MathSciNet  MATH  Google Scholar 

  68. Naito, S., Nomoto, F., Sagaki, D.: Specialization of nonsymmetric Macdonald polynomials at t = and Demazure submodules of level-zero extremal weight modules. Trans. Amer. Math. Soc. 370(4), 2739–2783 (2018). https://doi.org/10.1090/tran/7114

    Article  MathSciNet  MATH  Google Scholar 

  69. Naito, S., Sagaki, D.: Path model for a level-zero extremal weight module over a quantum affine algebra. Int. Math. Res. Not. 32, 1731–1754 (2003). https://doi.org/10.1155/S1073792803212216

    Article  MathSciNet  MATH  Google Scholar 

  70. Naito, S., Sagaki, D.: Crystal of Lakshmibai-Seshadri paths associated to an integral weight of level zero for an affine Lie algebra. Int. Math. Res. Not. 14, 815–840 (2005). https://doi.org/10.1155/IMRN.2005.815

    Article  MathSciNet  MATH  Google Scholar 

  71. Naito, S., Sagaki, D.: Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras. Comm. Math. Phys. 263(3), 749–787 (2006). https://doi.org/10.1007/s00220-005-1515-2

    Article  MathSciNet  MATH  Google Scholar 

  72. Naito, S., Sagaki, D.: Path model for a level-zero extremal weight module over a quantum affine algebra. II. Adv. Math. 200(1), 102–124 (2006). https://doi.org/10.1016/j.aim.2004.08.016

    Article  MathSciNet  MATH  Google Scholar 

  73. Naito, S., Sagaki, D.: Crystal structure on the set of Lakshmibai-Seshadri paths of an arbitrary level-zero shape. Proc. Lond. Math. Soc. (3) 96(3), 582–622 (2008). https://doi.org/10.1112/plms/pdm034

    Article  MathSciNet  MATH  Google Scholar 

  74. Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Amer. Math. Soc. 14(1), 145–238 (2001). https://doi.org/10.1090/S0894-0347-00-00353-2

    Article  MathSciNet  MATH  Google Scholar 

  75. Nakajima, H.: T-analogue of the q-characters of finite dimensional representations of quantum affine algebras. In: Physics and Combinatorics, 2000 (Nagoya), pp. 196–219. World Sci. Publ., River Edge (2001), https://doi.org/10.1142/9789812810007_0009

  76. Nakajima, H.: t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003). https://doi.org/10.1090/S1088-4165-03-00164-X. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  77. Nakajima, H.: t-analogs of q-characters of quantum affine algebras of type \(A_{n,D_{n}}\). In: Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., vol. 325, pp. 141–160. Amer. Math. Soc., Providence (2003), https://doi.org/10.1090/conm/325/05669

  78. Nakajima, H.: Quiver varieties and t-analogs of q-characters of quantum affine algebras. Ann. of Math. (2) 160(3), 1057–1097 (2004). https://doi.org/10.4007/annals.2004.160.1057

    Article  MathSciNet  MATH  Google Scholar 

  79. Nakajima, H.: t-analogs of q-characters of quantum affine algebras of type \(E_{6,E_{7},E_{8}}\). In: Representation Theory of Algebraic Groups and Quantum Groups, Progr. Math., vol. 284, pp. 257–272. Birkhäuser/Springer, New York (2010), https://doi.org/10.1007/978-0-8176-4697-4_10

  80. Nakashima, T.: Geometric crystals on Schubert varieties. J. Geom. Phys. 53(2), 197–225 (2005). https://doi.org/10.1016/j.geomphys.2004.06.004

    Article  MathSciNet  MATH  Google Scholar 

  81. Nakashima, T.: Decorated geometric crystals, polyhedral and monomial realizations of crystal bases. In: Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory, Contemp. Math., vol. 602, pp. 143–163. Amer. Math. Soc., Providence (2013), https://doi.org/10.1090/conm/602/12025

  82. Nakashima, T.: Decorations on geometric crystals and monomial realizations of crystal bases for classical groups. J. Algebra 399, 712–769 (2014). https://doi.org/10.1016/j.jalgebra.2013.09.052

    Article  MathSciNet  MATH  Google Scholar 

  83. Okado, M., Schilling, A.: Existence of Kirillov-Reshetikhin crystals for nonexceptional types. Represent. Theory 12, 186–207 (2008). https://doi.org/10.1090/S1088-4165-08-00329-4

    Article  MathSciNet  MATH  Google Scholar 

  84. Okado, M., Schilling, A., Shimozono, M.: A tensor product theorem related to perfect crystals. J. Algebra 267(1), 212–245 (2003). https://doi.org/10.1016/S0021-8693(03)00349-1

    Article  MathSciNet  MATH  Google Scholar 

  85. Rupel, D., Stella, S., Williams, H.: On generalized minors and quiver representations. Int. Math. Res. Not. pp. Art. ID rny053 43. https://doi.org/10.1093/imrn/rny053 (2018)

  86. Sam, S.V., Tingley, P.: Combinatorial realizations of crystals via torus actions on quiver varieties. J. Algebraic Combin. 39(2), 271–300 (2014). https://doi.org/10.1007/s10801-013-0448-7

    Article  MathSciNet  MATH  Google Scholar 

  87. Schilling, A., Tingely, P.: Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function. Electron. J. Combin. 19(2), Paper 4, 42 (2012). [Second author’s name now “Tingley” on article]

    Article  MathSciNet  Google Scholar 

  88. Schützenberger, M. P.: Promotion des morphismes d’ensembles ordonnés. Discrete Math. 2, 73–94 (1972)

    Article  MathSciNet  Google Scholar 

  89. Shimozono, M.: Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties. J. Algebraic Combin. 15(2), 151–187 (2002). https://doi.org/10.1023/A:1013894920862

    Article  MathSciNet  MATH  Google Scholar 

  90. Takagi, T.: Inverse scattering method for a soliton cellular automaton. Nuclear Phys. B 707(3), 577–601 (2005). https://doi.org/10.1016/j.nuclphysb.2004.11.047

    Article  MathSciNet  MATH  Google Scholar 

  91. Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Japan 59(10), 3514–3519 (1990). https://doi.org/10.1143/JPSJ.59.3514

    Article  MathSciNet  Google Scholar 

  92. Tingley, P.: Three combinatorial models for \(\widehat {\text {sl}}_{n}\) crystals, with applications to cylindric plane partitions. Int. Math. Res. Not. IMRN (2), Art. ID rnm143, 40 (2008)

  93. Yamada, Y.: A birational representation of Weyl group, combinatorial R-matrix and discrete Toda equation. In: Physics and Combinatorics, 2000 (Nagoya), pp. 305–319. World Sci. Publ., River Edge (2001), https://doi.org/10.1142/9789812810007_0014

  94. Yamane, S.: Perfect crystals of \(U_{q(G^{(1)}_{2})}\). J. Algebra 210 (2), 440–486 (1998). https://doi.org/10.1006/jabr.1998.7597

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peter Tingley, Rinat Kedem, and Bolor Turmunkh for valuable discussions. The authors would like to thank Masato Okado, Ben Salisbury, and Anne Schilling for comments on earlier drafts of this paper. The authors thank the anonymous referee for many useful comments and improvements to this paper. This work benefited from computations using SageMath [10, 12].

The majority of this work was done while the authors were at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Gunawan.

Additional information

Presented by: Peter Littelmann

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by the National Science Foundation RTG grant NSF/DMS-1148634.

Appendix: Examples with SageMath

Appendix: Examples with SageMath

We give some examples using SageMath [12] using the crystal of Nakajima monomials implemented by Ben Salisbury and Arthur Lubovsky.

We construct B1,2 for \(\widehat {\mathfrak {s}\mathfrak {l}}_{5}\) using Nakajima monomials and then compare with the tensor product with B1,1, verifying Theorem 4 in this case:

figure b

Next we construct B1,1B1,2 for \(\widehat {\mathfrak {s}\mathfrak {l}}_{3}\):

figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunawan, E., Scrimshaw, T. Kirillov–Reshetikhin Crystals B1, s for \(\widehat {\mathfrak {s}\mathfrak {l}}_{n}\) Using Nakajima Monomials. Algebr Represent Theor 23, 1–27 (2020). https://doi.org/10.1007/s10468-019-09904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-019-09904-5

Keywords

Mathematics Subject Classification (2010)

Navigation