Skip to main content
Log in

Cotwists of Bicomonads and BiHom-bialgebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

This paper presents the definition of the cotwists of a bicomonad, which offers a generalization of cotwists of bimonoids in duoidal categories. We show that a new bicomonad can be deduced from the cotwist, and their corepresentations are monoidal isomorphic. As applications, the cotwists of bialgebroids and of BiHom-bialgebras are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar, M., Mahajan, S.: Monoidal Species and Hopf Algebras. CRM Monograph Series 29. American Math. Soc., Providence (2010)

    Book  Google Scholar 

  2. Aljadeff, E., Etingof, P., Gelaki, S., Nikshych, D.: On twisting of finite-dimensional Hopf algebras. J. Algebra 256, 484–501 (2002)

    Article  MathSciNet  Google Scholar 

  3. Booker, T., Street, R.: Tannaka duality and convolution for duoidal categories. Theory Appl. Categ. 28(6), 166–205 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bruguières, A., Lack, S., Virelizier, A.: Hopf monads on monoidal categories. Adv. Math. 227(2), 745–800 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bruguières, A., Virelizier, A.: Hopf monads. Adv. Math. 215(2), 679–733 (2007)

    Article  MathSciNet  Google Scholar 

  6. Böhm, G., Lack, S., Street, R.: Weak bimonads and weak Hopf monads. J. Algebra 328, 1–30 (2011)

    Article  MathSciNet  Google Scholar 

  7. Böhm, G., Chen, Y.Y., Zhang, L.Y.: On Hopf monoids in duoidal categories. J. Algebra 394, 139–172 (2013)

    Article  MathSciNet  Google Scholar 

  8. Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras. Comm. Algebra 39, 2216–2240 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y.Y., Böhm, G.: Weak bimonoids in duoidal categories. J. Pure Appl. Algebra 218(12), 2240–2273 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chikhladze, D., Lack, S., Street, R.: Hopf monoidal comonads. Theory Appl. Categ. 24(19), 554–563 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Drinfeld, V.G.: Quasi-Hopf algebras. Algebra i Analiz 1, 114–148 (1989). English translation: Leningrad Math. J. 1, 1419-1457, 1990

    MathSciNet  Google Scholar 

  12. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math. 9 (2), 381–398 (1965)

    Article  MathSciNet  Google Scholar 

  13. Forcey, S., Siehler, J., Sowers, E.S.: Operads in iterated monoidal categories. J. Homotopy Relat. Struct. 2(1), 1–43 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Graziani, G., Makhlouf, A., Menini, C., Panaite, F.: BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras. SIGMA 11(086), 086 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Guo, S.J., Zhang, X.H.: Separable functors for the category of Doi Hom-Hopf modules. Colloq. Math. 143, 23–37 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Guo, S.J., Zhang, X.H., Wang, S.X.: The construction and deformation of BiHom-Novikov algebras. J. Geom. Phys. 132, 460–472 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kassel, C.: Quantum Groups. Springer, New York (1995)

    Book  Google Scholar 

  18. Livernet, M., Mesablishvili, B., Wisbauer, R.: Generalised bialgebras and entwined monads and comonads. J. Pure Appl. Algebra 219, 3263–3278 (2015)

    Article  MathSciNet  Google Scholar 

  19. Lu, D.W., Zhang, X.H.: Hom-L-R-smash biproduct and the category of Hom-Yetter-Drinfel’d-Long bimodules. J. Algebra Appl. 17(7), 1850133 (2018)

    Article  MathSciNet  Google Scholar 

  20. Mac Lane, S.: Categories for the Working Mathematicians. Graduate Texts in Math. Springer, New York (1971)

    Book  Google Scholar 

  21. Mac Lane, S.: Homologie Des Anneaux Et Des Modules. Colloque de topologie algebrique, Louvain (1956)

    Google Scholar 

  22. Makhlouf, A., Panaite, F.: Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra. J. Algebra 441(1), 314–343 (2015)

    Article  MathSciNet  Google Scholar 

  23. Makhlouf, A., Panaite, F.: Yetter-Drinfeld modules for Hom-bialgebras. J. Math. Phys. 55, 013501 (2014)

    Article  MathSciNet  Google Scholar 

  24. Makhlouf, A., Silvestrov, S.D.: Hom-algebras and Hom-coalgebras. J. Algebra Appl. 09, 553–589 (2010)

    Article  MathSciNet  Google Scholar 

  25. Makhlouf, A., Silvestrov, S.D.: Hom-algebras structures. J. Gen. Lie Theory Appl. 2, 51–64 (2008)

    Article  MathSciNet  Google Scholar 

  26. Makhlouf, A., Silvestrov, S.D.: Hom-Lie Admissible Hom-coalgebras and Hom-Hopf Algebras. Generalized Lie theory in Mathematics, Physics and Beyond, pp Chp 17, 189–206. Springer, Berlin (2008)

    MATH  Google Scholar 

  27. McCrudden, P.: Opmonoidal monads. Theory Appl. Categ. 10(19), 469–485 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Mesablishvili, B.: Bimonads and Hopf monads on categories. J. K-theory 7(2), 349–388 (2011)

    Article  MathSciNet  Google Scholar 

  29. Mesablishvili, B., Wisbauer, R.: Galois functors and generalised Hopf modules. J. Homotopy Relat. Struct. 9(1), 199–222 (2014)

    Article  MathSciNet  Google Scholar 

  30. Mesablishvili, B., Wisbauer, R.: The fundamental theorem for weak braided bimonads. J. Algebra 490, 55–103 (2017)

    Article  MathSciNet  Google Scholar 

  31. Moerdijk, I.: Monads on tensor categories. J. Pure Appl. Algebra 168(2-3), 189–208 (2002)

    Article  MathSciNet  Google Scholar 

  32. Power, J., Watanabe, H.: Combining a monad and a comonad. Theor. Comput. Sci. 280(1-2), 137–162 (2002)

    Article  MathSciNet  Google Scholar 

  33. Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2(2), 149–168 (1972)

    Article  MathSciNet  Google Scholar 

  34. Wang, D.G., Zhang, J.J., Zhuang, G.B.: Coassociative Lie algebras. Glasgow Math. J. 55, 195–215 (2013)

    Article  MathSciNet  Google Scholar 

  35. Xu, Y.J., Wang, D.G., Chen, J.L.: Analogues of quantum Schubert cell algebras in PBW-deformations of quantum groups. J. Algebra Appl. 15(10), 1650179 (2016)

    Article  MathSciNet  Google Scholar 

  36. Yau, D.: Hom-quantum groups I: Quasitriangular Hom-bialgebras. J. Phys. A 45(6), 065203 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zhang, X.H., Dong, L.H.: Braided mixed datums and their applications on Hom-quantum groups. Glasgow Math. J. 60, 231–251 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhang, X.H., Wang, W., Zhao, X.F.: Drinfeld twists for monoidal Hom-bialgebras. Colloq. Math. 156(2), 199–228 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X.H., Wang, W., Zhao, X.F.: Smash coproducts of bicomonads and Hom-entwining structures. e-Print arXiv:1601.07979 [math.RA] (2016)

  40. Zhao, X.F., Zhang, X.H.: Lazy 2-cocycles over monoidal Hom-Hopf algebras. Colloq. Math. 142(1), 61–81 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhang.

Additional information

Presented by: Michel Brion

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was partially supported by the National Natural Science Foundation of China (No. 11801304, 11801306, 11871301), and the Project funded by China Postdoctoral Science Foundation (No. 2018M630768).

Appendix: Some diagrammatic proofs

Appendix: Some diagrammatic proofs

Proof of Lemma 4.3.

⇒: If κ is the convolution inverse of κ, then for any \(X,Y \in \mathcal {M}\), we have

Thus \(\overline {\kappa ^{\prime }}\ast \overline {\kappa } = \varepsilon \diamond \varepsilon \). Note that in this diagram, the formulae (A2), (U4), (3.1) and the naturality are used. Similarly, one can check that \(\overline {\kappa }\ast \overline {\kappa ^{\prime }} = \varepsilon \diamond \varepsilon \). □

Proof of Proposition 4.4.

We only need to prove \({\overline {A^{\kappa }}}_{2} = {{\overline {A}}^{\overline {\kappa }}}_{2}\). To prove this, for any \(X,Y \in \mathcal {M}\), we have

This completes our substantiation. □

Proof of Lemma 4.7, verification of ⇒:

Suppose that Diagram (3.2) holds. For any \(X,Y,Z \in \mathcal {M}\), we compute as follows.

On the one hand, we have

Note that in this diagram, Eqs. (A1) and (3.2) are used.

On the other hand, we have

This completes the prove. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, D. Cotwists of Bicomonads and BiHom-bialgebras. Algebr Represent Theor 23, 1355–1385 (2020). https://doi.org/10.1007/s10468-019-09888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-019-09888-2

Keywords

Navigation