Skip to main content
Log in

Higher Jones Algebras and their Simple Modules

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let G be a connected reductive algebraic group over a field of positive characteristic p and denote by \(\mathcal T\) the category of tilting modules for G. The higher Jones algebras are the endomorphism algebras of objects in the fusion quotient category of \(\mathcal T\). We determine the simple modules and their dimensions for these semisimple algebras as well as their quantized analogues. This provides a general approach for determining various classes of simple modules for many well-studied algebras such as group algebras for symmetric groups, Brauer algebras, Temperley–Lieb algebras, Hecke algebras and BMW-algebras. We treat each of these cases in some detail and give several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, H.H.: The strong linkage principle. J. Reine Ang. Math. 315, 53–59 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Andersen, H.H.: Tensor products of quantized tilting modules. Comm. Math. Phys. 149, 149–159 (1992)

    Article  MathSciNet  Google Scholar 

  3. Andersen, H.H.: The strong linkage principle for quantum groups at roots of 1. J. Alg. 260, 2–15 (2003)

    Article  MathSciNet  Google Scholar 

  4. Andersen, H.H.: Simple modules for Temperley–Lieb algebras and related algebras. J. Alg. 520, 276–308 (2019)

    Article  MathSciNet  Google Scholar 

  5. Andersen, H.H., Paradowski, J.: Fusion categories arising from semisimple Lie algebras. Comm. Math. Phys. 169, 563–588 (1995)

    Article  MathSciNet  Google Scholar 

  6. Andersen, H.H., Polo, P., Kexin, W.: Representations of quantum algebras. Invent. Math. 104, 1–59 (1991)

    Article  MathSciNet  Google Scholar 

  7. Andersen, H.H., Stroppel, C.: Fusion rings for quantum groups, vol. 17 (2014)

  8. Andersen, H.H., Stroppel, C., Tubbenhauer, D.: Cellular structures using Uq-tilting modules. Pac. J. Math. 292, 21–59 (2018)

    Article  Google Scholar 

  9. Andersen, H.H., Stroppel, C., Tubbenhauer, D.: Semisimplicity of Hecke and (walled) Brauer algebras. J. Aust. Math. Soc. 103, 1–44 (2017)

    Article  MathSciNet  Google Scholar 

  10. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. of Math. 38(1937), 857–872 (1937)

    Article  MathSciNet  Google Scholar 

  11. Carter, R., Lusztig, G.: On the modular representations of the general linear and symmetric groups. Math. Z. 136, 193–242 (1974)

    Article  MathSciNet  Google Scholar 

  12. Dipper, R., Doty, S., Hu, J.: Brauer algebras, symplectic Schur algebras and Schur–Weyl duality. Trans AMS 360, 189–213 (2008)

    Article  MathSciNet  Google Scholar 

  13. Donkin, S.: Rational representations of algebraic groups, Lecture Notes in Math 1140. Springer, Berlin (1985)

    Google Scholar 

  14. Donkin, S.: On tilting modules for algebraic groups. Math. Z. 212, 39–60 (1993)

    Article  MathSciNet  Google Scholar 

  15. Doty, S., Hu, J.: Schur–Weyl duality for orthogonal groups. Proc. LMS 98, 679–713 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Du, J., Parshall, B., Scott, L.: Quantum Weyl reciprocity and tilting modules. Comm. Math. Phys. 195, 321–352 (1998)

    Article  MathSciNet  Google Scholar 

  17. Goodman, F.M., Wenzl, H.: Littlewood-Richardson coefficients for Hecke algebras at roots of unity. Adv. Math. 82, 244–265 (1990)

    Article  MathSciNet  Google Scholar 

  18. Graham, J., Lehrer, G.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MathSciNet  Google Scholar 

  19. Hu, J.: BMW algebra, quantized coordinate algebra and type C Schur–Weyl duality. Repr. Theory 15, 1–62 (2011)

    Article  MathSciNet  Google Scholar 

  20. Iohara, K., Lehrer, G.I., Zhang, R.B.: Temperley–Lieb at roots of unity, a fusion category and the Jones quotient. Math Res. Lett. (to appear), online available. arXiv:1707.01196

  21. Jantzen, J.C.: Representations of algebraic groups mathematical surveys and monographs, vol. 107. American Mathematical Society, Providence (2003)

    Google Scholar 

  22. Kleshchev, A.: Completely splittable representations of symmetric groups. J. Algebra 181, 584–592 (1996)

    Article  MathSciNet  Google Scholar 

  23. Mathieu, O.: Filtrations of G-modules. Ann. scient. É,c. Norm. Sup. 23, 625–644 (1990)

    Article  MathSciNet  Google Scholar 

  24. Mathieu, O.: On the dimension of some modular irreducible representations of the symmetric group. Lett. Math. Phys. 38, 23–32 (1996)

    Article  MathSciNet  Google Scholar 

  25. Wang, J.-P.: Sheaf cohomology on G/B and tensor products of Weyl modules. J. Algebra 77, 162–185 (1982)

    Article  MathSciNet  Google Scholar 

  26. Wenzl, H.: Hecke algebras of type An and subfactors. Invent. Math. 92, 349–383 (1988)

    Article  MathSciNet  Google Scholar 

  27. Wenzl, H.: On the Structure of Brauer’s Centralizer Algebras. Ann. Math. 128, 173–193 (1988)

    Article  MathSciNet  Google Scholar 

  28. Wenzl, H.: Quantum Groups and Subfactors of Type B, C, and D. Commun. Math. Phys. 133, 383–432 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Thanks to the referee for a quick and careful reading as well as for her/his many useful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Haahr Andersen.

Additional information

Presented by: Peter Littelmann

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, H.H. Higher Jones Algebras and their Simple Modules. Algebr Represent Theor 23, 393–419 (2020). https://doi.org/10.1007/s10468-018-09853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-09853-5

Keywords

Mathematics Subject Classification (2010)

Navigation