Skip to main content
Log in

On Schur Superfunctors

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We introduce super-analogues of the Schur functors defined by Akin, Buchsbaum and Weyman. These Schur superfunctors may be viewed as characteristic-free analogues of finite dimensional irreducible polynomial representations of the Lie superalgebra 𝔤𝔩(m|n) studied by Berele and Regev. Our construction realizes Schur superfunctors as objects of a certain category of strict polynomial superfunctors. We show that Schur superfunctors are indecomposable objects of this category. In characteristic zero, these correspond to the set of all simple supermodules for the Schur superalgebra, S(m|n, d), for any m, n, d ⩾ 0. We also provide decompositions of Schur bisuperfunctors in terms of tensor products of skew Schur superfunctors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, K., Buchsbaum, D., Weyman, J.: Schur functors and Schur complexes. Adv. Math. 44(3), 207–278 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Axtell, J.: Spin polynomial functors and representations of Schur superalgebras. Represent. Theory 17, 584–609 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64(2), 118–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brundan, J., Kleshchev, A.: Projective representations of symmetric groups via Sergeev duality. Math. Z. 239(1), 27–68 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brundan, J., Kleshchev, A.: Modular representations of the supergroup Q(n). I. J. Algebra 260, 64–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brundan, J., Kujawa, J.: A new proof of the Mullineux conjecture. J. Algebraic Combin. 18(1), 13–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donkin, S.: Symmetric and exterior powers, linear source modules and representations of Schur superalgebras. Proc. Lond. Math. Soc. 83(3), 647–680 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Concini, C., Eisenbud, D., Procesi, C.: Young diagrams and determinantal varieties. Invent. Math. 56, 129–165 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Drupieski, C.: Cohomological finite-generation for finite supergroup schemes. Adv. Math. 288, 1360–1432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedlander, E., Suslin, A.: Cohomology of finite group schemes over a field. Invent. Math. 127, 209–270 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Green, J.A.: Polynomial representations of GL n . Second corrected and augmented edition. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker. Lecture Notes in Mathematics, 830. Springer, Berlin, 2007 (2007)

  12. Hong, J., Touzé, A., Yacobi, O.: Polynomial functors and categorifications of Fock space, Symmetry: Representation Theory and Its Applications. Prog. Math. 257, 327–352 (2014)

    Article  MATH  Google Scholar 

  13. Jantzen, J.C.: Representations of algebraic groups. Second edition. Mathematical Surveys and Monographs, vol. 107. American Mathematical Society, Providence RI (2003)

    Google Scholar 

  14. Krause, H.: Koszul, Ringel and Serre Duality for strict polynomial functors. Compos. Math. 149(6), 996–1018 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. La Scala, R., Zubkov, A.N.: Costandard modules over Schur superalgebras in characteristic p. J. Algebra Appl. 7(2), 147–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Macdonald, I.G.: Symmetric functions and Hall polynomials, second ed. The Clarendon Press, Oxford University Press, New York, With contributions by A. Zelevinsky, Oxford Science Publications (1995)

  17. Marko, F., Zubkov, A.N.: Schur superalgebras in characteristic p. Algebr. Represent. Theory 9(1), 1–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Muir, N.J.: Polynomial representations of the general linear Lie superalgebra, Ph.D. Thesis, University of London (1991)

  19. Pirashvili, T.: Introduction to functor homology. Rational representations, the Steenrod algebra and functor homology, 27–53, Panor. Synthèses, 16, Soc. Math. France, Paris (2003)

  20. Touzé, A.T.: Ringel duality and derivatives of non-additive functors. J. Pure Appl. Algebra 217(9), 1642–1673 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weyman, J.: Cohomology of Vector Bundles and Syzygies Cambridge Tracts in Mathematics, vol. 149. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  22. Wan, J., Wang, W.: Lectures on spin representation theory of symmetric groups. Bull. Inst. Math. Acad. Sin. (N.S.) 7(1), 91–164 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Seok-Jin Kang and Myungho Kim for many helpful discussions and Jerzy Weyman for helpful correspondence. This paper was supported by the Sungkyun Research Fund, Sungkyunkwan University, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Axtell.

Additional information

Presented by Steffen Koenig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axtell, J. On Schur Superfunctors. Algebr Represent Theor 21, 87–129 (2018). https://doi.org/10.1007/s10468-017-9705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9705-0

Keywords

Mathematics Subject Classification (2010)

Navigation