Skip to main content
Log in

Polar Symplectic Representations

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We study polar representations in the sense of Dadok and Kac which are symplectic. We show that such representations are coisotropic and use this fact to give a classification. We also study their moment maps and prove that they separate closed orbits. Our work can also be seen as a specialization of some of the results of Knop on multiplicity free symplectic representations to the polar case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieliavsky, P., Cahen, M., Gutt, S.: Symmetric symplectic manifolds and deformation quantization. Modern group theoretical methods in physics. In: Bertrand, J., Flato, M., Gazeau, J.-P., Irac-Astaud, M., Sternheimer, D. (eds.) Proceedings of the Conference in Honour of Guy Rideau. Math. Phys. Studies, no. 18, pp. 63–75. Kluwer Academic Publishers (1995)

  2. Bieliavsky, P.: Semisimple symplectic symmetric spaces, Ph.D. thesis, Université Libre de Bruxelles. E-print arXiv:math/0703358 [math.DG] (1995)

  3. Bieliavsky, P.: Semisimple symplectic symmetric spaces. Geom. Dedicata 73(3), 245–273 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birkes, D.: Orbits of linear algebraic groups. Ann. Math. 93(3), 459–475 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Éléments de mathématique: Groupes et algèbres de Lie, Fascicule XXXIV, Chapitres IV, V, VI, Hermann (1968)

  6. Benson, C., Ratcliff, G.: On multiplicity free actions, Representations of real and p-adic groups, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 2, pp. 221–304. Singapore Univ. Press, Singapore (2004)

    Google Scholar 

  7. Bremigan, R.: Galois cohomology and real algebraic quotients. J. Algebra 159(2), 275–305 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Amer. Math. Soc. 288, 125–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dadok, J., Kac, V.: Polar representations. J. Algebra 92, 504–524 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daszkiewicz, A., Przebinda, T.: On the moment map of a multiplicity free action. Colloq. Math. 71(1), 107–110 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Eschenburg, J., Heintze, E.: On the classification of polar representations. Math. Z. 232, 391–398 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geatti, L., Gorodski, C.: Polar orthogonal representations of real reductive algebraic groups. J. Algebra 320, 3036–3061 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huckleberry, A.T., Wurzbacher, T.: Multiplicity-free complex manifolds. Math. Ann. 286, 261–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kac, V.: Some remarks on nilpotent orbits. J. Algebra 64(1), 190–213 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knop, F.: Some remarks on multiplicity free spaces, Representation theories and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, pp. 301–317. Kluwer Acad. Publ., Dordrecht (1998). Electronic version http://www.algeo.math.fau.de/fileadmin/algeo/users/knop/papers/montreal.html

  16. Knop, F.: Classification of multiplicity free symplectic representations. J. Algebra 301(2), 531–553 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knop, F.: Invariant functions on symplectic representations. J. Algebra 313(1), 223–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Littelmann, P.: Koreguläre und äquidimensionale Darstellungen. J. Algebra 123(1), 193–222 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Losev, I.V.: Coisotropic representations of reductive groups. (Russian). Tr. Mosk. Mat. Obs. 66, 156–183 (2005). English translation in Trans. Moscow Math. Soc. (2005), 143–168

    MATH  Google Scholar 

  20. Luna, D.: Sur les orbites fermées des groupes algébriques réductifs. Invent. Math. 16, 1–5 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luna, D.: Slices étales. Memoires Bull. Soc. Math. France 33, 81–105 (1973)

    Article  MATH  Google Scholar 

  22. Milne, J.S.: Algebraic Geometry. http://www.jmilne.org/math/CourseNotes/ag.html (last checked on 2014-6-28) (2012)

  23. Podestà, F., Thorbergsson, G.: Polar and coisotropic actions on Kahler̈ manifolds. Trans. Amer. Math. Soc. 354, 1759–1781 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Popov, V.L., Vinberg, E.B.: Invariant theory, Encyclopaedia of Mathematical Sciences, ch. II, vol. 55, pp. 123–278. Springer-Verlag, Berlin (1994)

    Google Scholar 

  25. Schwarz, G.W.: Lifting smooth homotopies of orbit spaces. I.H.E.S. Publ. Math. 51, 37–135 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vinberg, E.B.: The Weyl group of a graded Lie algebra. (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 40(3), 488–526, 709 (1976). English translation in Math. USSR-Izv. 10 (1976), 463–495

    MathSciNet  MATH  Google Scholar 

  27. Vinberg, E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. (Russian). Uspekhi Mat. Nauk 56(1(337)), 3–62 (2001). English translation in Russian. Math. Surveys 56(1) (2001), 1–60

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Gorodski.

Additional information

Presented by Peter Littelman

The second author has been partially supported by the CNPq grant 303038/2013-6 and the FAPESP project 2011/21362-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geatti, L., Gorodski, C. Polar Symplectic Representations. Algebr Represent Theor 20, 751–764 (2017). https://doi.org/10.1007/s10468-016-9663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9663-y

Keywords

Mathematics Subject Classification (2010)

Navigation