Skip to main content
Log in

A New Approach to Leibniz Bialgebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

A study of Leibniz bialgebras arising naturally through the double of Leibniz algebras analogue to the classical Drinfeld’s double is presented. A key ingredient of our work is the fact that the underline vector space of a Leibniz algebra becomes a Lie algebra and also a commutative associative algebra, when provided with appropriate new products. A special class of them, the coboundary Leibniz bialgebras, gives us the natural framework for studying the Yang-Baxter equation (YBE) in our context, inspired in the classical Yang-Baxter equation as well as in the associative Yang-Baxter equation. Results of the existence of coboundary Leibniz bialgebra on a symmetric Leibniz algebra under certain conditions are obtained. Some interesting examples of coboundary Leibniz bialgebras are also included. The final part of the paper is dedicated to coboundary Leibniz bialgebra structures on quadratic Leibniz algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar, M.: Infinitesimal Hopf algebras. New trends in Hopf algebra theory (La Falda, 1999), 1–29, Contemp. Math., 267. American Mathematical Society, Providence (2000)

    Google Scholar 

  2. Aguiar, M.: On the associative analog of Lie bialgebras. J. Algebra 244(2), 492–532 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnes, D.W.: On Levi’s theorem for Leibniz algebras. Bull. Aust. Math. Soc. 86(2), 184–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreiro, E., Benayadi, S.: Quadratic symplectic Lie superalgebras and Lie bi-superalgebras. J. Algebra 321, 582–608 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benayadi, S., Boucetta, M.: Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures. Differential Geom. Appl. 36, 66–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benayadi, S., Hidri, S.: Quadratic Leibniz algebras. J. Lie Theory 24(3), 737–759 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Casas, J.M., Ladra, M., Omirove, B.A., Karimjanov, I.A.: Classification of solvable Leibniz algebras with naturally gradedfiliform nilradical. Linear Algebra Appl. 438(7), 2973–3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chari, V., Pressley, A.: A guide to quantum groups. Cambridge University Press (1994)

  9. Covez, S.: The local integration of Leibniz algebras. Ann. Inst. Fourier (Grenoble) 63(1), 1–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuvier, C.: Algèbres de Leibnitz: Définition, propriétées. Ann. Sci. École Norm. Sup. 27(4), 1–45 (1994)

    MathSciNet  Google Scholar 

  11. Drinfeld, V.G.: Quantum groups. In: Proceedings of ICM 1986, AMS 1 (1987), 798–820, Hamilton-Lie groups, Lie bialgebras and the geometric meaning of the Yang-Baxter equations, Dokl. Akad. Nauk SSSR (1982)

  12. Feldvoss, J.: Existence of triangular Lie bialgebra structures. J. Pure Appl. Algebra 134, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fialowski, A., Magnin, L., Mandan, A.: About Leibniz cohomology and deformations of Lie algebras. J. Algebra 383, 63–77 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geoffrey, M., Gaywalee, Y.: Leibniz algebras and Lie algebras. SIGMA Symmetry Integrability Geom. Methods Appl. 9, 10 (2013). Paper 063

    MathSciNet  MATH  Google Scholar 

  15. Gòmez-Vidal, S., Khudoyberdiyev, A. Kh., Omirov, B.A.: Some remarks on semisimple Leibniz algebras. J. Algebra 410, 526–540 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hedges, A., Stitzinger, E.: More on the Frattini subalgebra of a Leibniz algebra. arXiv:1206.5707v2 [math.RA] (2013)

  17. Joni, S.A., Rota, G.C. In: Kung, J.P.S. (ed.) : Coalgebras and bialgebras in combinatorics, Stud. Appl. Math. 61 (1979), no. 2, 93 – 139. Reprinted in Gian-Carlo Rota on Combinatorics: Introductory papers and commentaries. Birkhäuser, Boston (1995)

  18. Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. (French) [A noncommutative version of Lie algebras: the Leibniz algebras]. Enseign. Math. 39(3-4), 269–293 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Michaelis, W.: Lie coalgebras. Adv. Math. 38(1), 1–54 (1980) 1

    Article  MathSciNet  MATH  Google Scholar 

  20. Rezaei-Aghdam, A., Haghighatdoost, G.H., Sedghi-Ghadim, L.: Leibniz bialgebras. arXiv:1401.6845v1 [math-ph] (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabete Barreiro.

Additional information

Presented by Peter Littelmann.

This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreiro, E., Benayadi, S. A New Approach to Leibniz Bialgebras. Algebr Represent Theor 19, 71–101 (2016). https://doi.org/10.1007/s10468-015-9563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-015-9563-6

Keywords

Mathematics Subject Classification (2010)

Navigation