Skip to main content
Log in

Kernel regression with Weibull-type tails

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider the estimation of the tail coefficient of a Weibull-type distribution in the presence of random covariates. The approach followed is non-parametric and consists of locally weighted estimation in narrow neighbourhoods in the covariate space. We introduce two families of estimators and study their asymptotic behaviour under some conditions on the conditional response distribution, the kernel function, the density function of the independent variables, and for appropriately chosen bandwidth and threshold parameters. We also introduce a Weissman-type estimator for estimating upper extreme conditional quantiles. The finite sample behaviour of the proposed estimators is examined with a simulation experiment. The practical applicability of the methodology is illustrated on a dataset of sea storm measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Beirlant, J., Broniatowski, M., Teugels, J. L., Vynckier, P. (1995). The mean residual life function at great age: Applications to tail estimation. Journal of Statistical Planning and Inference, 45, 21–48.

  • Billingsley, P. (1995). Probability and measure. New York: John Wiley.

  • Bingham, N. H., Goldie, C. M., Teugels, J. L. (1987). Regular variation. Cambridge: Cambridge University Press.

  • Broniatowski, M. (1993). On the estimation of the Weibull tail coefficient. Journal of Statistical Planning and Inference, 35, 349–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Daouia, A., Gardes, L., Girard, S., Lekina, A. (2011). Kernel estimators of extreme level curves. Test, 20, 311–333.

  • Daouia, A., Gardes, L., Girard, S. (2013). On kernel smoothing for extremal quantile regression. Bernoulli, 19, 2557–2589.

  • Davison, A. C., Smith, R. L. (1990). Models for exceedances over high thresholds. Journal of the Royal Statistical Society Series B, 52, 393–442.

  • de Haan, L., de Ronde, J. (1998). Sea and wind: Multivariate extremes at work. Extremes, 1, 7–45.

  • de Haan, L., Ferreira, A. (2006). Extreme value theory: An introduction. New York: Springer.

  • Diebolt, J., Gardes, L., Girard, S., Guillou, A. (2008). Bias-reduced estimators of the Weibull tail-coefficient. Test, 17, 311–331.

  • Dierckx, G., Beirlant, J., De Waal, D., Guillou, A. (2009). A new estimation method for Weibull-type tails based on the mean excess function. Journal of Statistical Planning and Inference, 139, 1905–1920.

  • Draisma, G., de Haan, L., Peng, L., Pereira, T. T. (1999). A bootstrap-based method to achieve optimality in estimating the extreme-value index. Extremes, 2, 367–404.

  • Draisma, G., Drees, H., Ferreira, A., de Haan, L. (2004). Bivariate tail estimation: Dependence in asymptotic independence. Bernoulli, 10, 251–280.

  • Gannoun, A., Girard, S., Guinot, C., Saracco, J. (2002). Reference ranges based on nonparametric quantile regression. Statistics in Medicine, 21, 3119–3135.

  • Gardes, L., Girard, S. (2005). Estimating extreme quantiles of Weibull tail distributions. Communications in Statistics—Theory and Methods, 34, 1065–1080.

  • Gardes, L., Girard, S. (2008a). Estimation of the Weibull-tail coefficient with linear combination of upper order statistics. Journal of Statistical Planning and Inference, 138, 1416–1427.

  • Gardes, L., Girard, S. (2008b). A moving window approach for nonparametric estimation of the conditional tail index. Journal of Multivariate Analysis, 99, 2368–2388.

  • Gardes, L., Stupfler, G. (2013). Estimation of the conditional tail index using a smoothed local Hill estimator. Extremes, 17, 45–75.

  • Geluk, J. L., de Haan, L. (1987). Regular variation, extensions and tauberian theorems. CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam.

  • Girard, S. (2004). A Hill type estimator of the Weibull tail coefficient. Communications in Statistics—Theory and Methods, 33, 205–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Goegebeur, Y., Guillou, A. (2010). Goodness-of-fit testing for Weibull-type behavior. Journal of Statistical Planning and Inference, 140, 1417–1436.

  • Goegebeur, Y., Guillou, A. (2011). A weighted mean excess function approach to the estimation of Weibull-type tails. Test, 20, 138–162.

  • Goegebeur, Y., Beirlant, J., de Wet, T. (2010). Generalized kernel estimators for the Weibull tail coefficient. Communications in Statistics—Theory and Methods, 39, 3695–3716.

  • Goegebeur, Y., Guillou, A., Osmann, M. (2014a). A local moment type estimator for the extreme value index in regression with random covariates. Canadian Journal of Statistics, 42, 487–507.

  • Goegebeur, Y., Guillou, A., Schorgen, A. (2014b). Nonparametric regression estimation of conditional tails: The random covariate case. Statistics, 48(4), 732–755.

  • Klüppelberg, C., Villaseñor, J. A. (1993). Estimation of distribution tails - a semiparametric approach. Deutschen Gesellschaft für Versicherungsmathematik XXI, 213–235.

  • Segers, J., Teugels, J. (2000). Testing the Gumbel hypothesis by Galton’s ratio. Extremes, 3, 291–303.

  • Smith, R. L. (1987). Estimating tails of probability distributions. Annals of Statistics, 15(3), 1174–1207.

    Article  MathSciNet  MATH  Google Scholar 

  • Stupfler, G. (2013). A moment estimator for the conditional extreme-value index. Electronic Journal of Statistics, 7, 2298–2343.

    Article  MathSciNet  MATH  Google Scholar 

  • van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge University Press.

  • Wang, H., Tsai, C. L. (2009). Tail index regression. Journal of the American Statistical Association, 104, 1233–1240.

  • Weissman, I. (1978). Estimation of parameters and large quantiles based on the \(k\) largest observations. Journal of the American Statistical Association, 73, 812–815.

    MathSciNet  MATH  Google Scholar 

  • Wretman, J. (1978). A simple derivation of the asymptotic distribution of a sample quantile. Scandinavian Journal of Statistics, 5, 123–124.

    MathSciNet  MATH  Google Scholar 

  • Yao, Q. (1999). Conditional predictive regions for stochastic processes. Technical report, University of Kent at Canterbury.

Download references

Acknowledgments

The authors kindly acknowledge Laurens de Haan and Ana Ferreira for providing the sea level data. This work was supported by a research Grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416). The authors are very grateful to the editor and two anonymous referees for their helpful and constructive comments on the preliminary versions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Goegebeur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 204 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Wet, T., Goegebeur, Y., Guillou, A. et al. Kernel regression with Weibull-type tails. Ann Inst Stat Math 68, 1135–1162 (2016). https://doi.org/10.1007/s10463-015-0531-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-015-0531-z

Keywords

Navigation