Skip to main content
Log in

Real-time control of ball balancer using neural integrated fuzzy controller

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper presents the design, control, and validation of two degrees of freedom Ball Balancer system. The ball and plate system is a nonlinear, electromechanical, multivariable, closed-loop unstable system on which study is carried out to control the position of ball and plate angle. The model of the system is developed using MATLAB/Simulink, and neural integrated fuzzy and its hybridization with PID have been implemented. The performance of each controller is evaluated in terms of time response analysis and steady-state error. Comparative study of simulation and real-time control results show that by using the neural integrated fuzzy controller and neural integrated fuzzy with proportional-integral-derivative Controller, the peak overshoot is reduced as compared with the PID controller and lead the system prone to appropriate balancing. These control techniques provide a stable and controlled output to the system for ball balancing and plate angle control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Acosta JÁ (2010) Furuta’s pendulum: a conservative nonlinear model for theory and practise. Math Prob Eng 2010:29

    Article  Google Scholar 

  • Andreev F, Auckly D, Gosavi S, Kapitanski L, Kelkar A, White W (2002) Matching, linear systems, and the ball and beam. Automatica 38(12):2147–2152

    Article  MathSciNet  Google Scholar 

  • Ansari AQ, Gupta NK (2011) Automated diagnosis of coronary heart disease using neuro-fuzzy integrated system. pp 1379–1384

  • Aranda J, Chaos D, Dormido-Canto S, Muñoz R, Díaz JM (2006) Benchmark control problems for a non-linear underactuated hovercraft: a simulation laboratory for control testing. IFAC Proc Vol 7:463–468

    Article  Google Scholar 

  • Awtar S, Bernard C, Boklund N, Master A, Ueda D, Craig K (2002) Mechatronic design of a ball-on-plate balancing system. Mechatronics 12(2):217–228

    Article  Google Scholar 

  • Bars R et al (2006) Theory, algorithms, and technology in the design of control systems. Ann Rev Control 30(1):19–30

    Article  Google Scholar 

  • Bosque G, Del Campo I, Echanobe J (2014) Fuzzy systems, neural networks and neuro-fuzzy systems: a vision on their hardware implementation and platforms over two decades. Eng Appl Artif Intell 32(1):283–331

    Article  Google Scholar 

  • Boubaker O (2012) The inverted pendulum: a fundamental benchmark in control theory and robotics. In: International conference on education and e-learning innovations

  • Chalupa P, Přikryl J, Novák J (2015) Modelling of twin rotor MIMO system. In: Proceedings of 20th international conference process control, PC 2015, pp 314–319

  • Da Silveira Castro R, Flores JV, Salton AT, Pereira LFA (2014) A comparative analysis of repetitive and resonant controllers to a servo-vision ball and plate system. IFAC Proc 19:1120–1125

    Article  Google Scholar 

  • Das A, Roy P (2017) Improved performance of cascaded fractional-order SMC over cascaded SMC for position control of a ball and plate system. IETE J Res 63(2):238–247

    Article  Google Scholar 

  • Fabregas E, Chacón J, Dormido-Canto S, Farias G, Dormido S (2015) Virtual laboratory of the ball and plate system. IFAC-PapersOnLine 48(29):152–157

    Article  Google Scholar 

  • Fan X, Zhang N, Teng S (2004) Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme. Fuzzy Sets Syst 144(2):297–312

    Article  MathSciNet  Google Scholar 

  • Ham C, Taufiq MM (2015) Development of a ball and plate system. In: 122nd ASEE Annual conference and exposition conference proceedings: making value for society

  • Hammadih ML, Al Hosani K, Boiko I (2016) Interpolating sliding mode observer for a ball and beam system. Int J Control 89(9):1879–1889

    Article  MathSciNet  Google Scholar 

  • Hauser J, Sastry S, Kokotovid P (1992) Nonlinear control via approximate input-output linearization: the ball and beam example. IEEE Trans Autom Control 37(3):392–398

    Article  MathSciNet  Google Scholar 

  • Ho M-T, Rizal Y, Chu L-M (2013) Visual servoing tracking control of a ball and plate system: design, implementation and experimental validation. Int J Adv Robot Syst 50:1

    Google Scholar 

  • Hoover RC, Amand JS (2012) Design of an approximate control law using input-state linearization for the ball on a plate system. Dyn Control Uncertain Parts A B 4:203

    Article  Google Scholar 

  • Hsu CF, Lin CM, Yeh RG (2013) Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems. Appl Soft Comput J 13(4):1620–1626

    Article  Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406

    Article  Google Scholar 

  • Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing. Simon & Schuster/A Viacom Company, Upper Saddle River

    Google Scholar 

  • Kar S, Das S, Ghosh PK (2014) Applications of neuro-fuzzy systems: a brief review and future outline. Appl Soft Comput J 15:243–259

    Article  Google Scholar 

  • Kassem A, Haddad H, Albitar C (2015) Commparison between different methods of control of ball and plate system with 6DOF Stewart platform. IFAC-PapersOnLine 48(11):47–52

    Article  Google Scholar 

  • Ker CC, Lin CE, Wang RT (2007) Tracking and balance control of ball and plate system. J Chin Inst Eng Trans 30(3):459–470

    Article  Google Scholar 

  • Lee M, Lee S-Y, Park CH (1994) A new neuro-fuzzy identification model of nonlinear dynamic systems. Int J Approx Reason 10(1):29–44

    Article  Google Scholar 

  • Lo WL, Rad AB, Chan PT, Mok CK (2003) An online learning fuzzy controller. IEEE Trans Ind Electron 50(5):1016–1021

    Article  Google Scholar 

  • Mochizuki S, Ichihara H (2013) Generalized Kalman–Yakubovich–Popov lemma based I-PD controller design for ball and plate system. J Appl Math 2013:9

    Article  MathSciNet  Google Scholar 

  • Murray R (2003) Future directions in control, dynamics, and systems: overview, grand challenges, and new courses. Eur J Control 9(2–3):144–158

    Article  Google Scholar 

  • Murray RM, Astrom KJ, Boyd SP, Brockett RW, Stein G (2003) Future directions in control in an information-rich world. IEEE Control Syst Mag 23(2):20–33

    Article  Google Scholar 

  • Neuro-Fuzzy Systems (2018) http://wwwiti.cs.uni-magdeburg.de/~nuernb/nfs/?cv=1. Accessed 28 Apr 2018

  • Ng KC, Trivedi MM, Vision C (1996) Fuzzy-neural controller and real-time implementation of a ball balancing beam. In: Proceedings of IEEE international conference on robotics automation, pp 1–17

  • Smith RS, Doyle J (1988) The two tank experiment: a benchmark control problem. In: American control conference, pp 2026–2031

  • Subramanian K, Savitha R, Suresh S (2014) A complex-valued neuro-fuzzy inference system and its learning mechanism. Neurocomputing 123:110–120

    Article  Google Scholar 

  • Sun S, Li L (2012) The study of ball and plate system based on non-linear PID. Appl Mech Mater 187:134–137

    Article  Google Scholar 

  • Swarnkar S (2011) Controller design for ball beam system using various control techniques

  • Tian Y, Bai M, Su J (2006) A non-linear switching controller for ball and plate system. Int J Model Identif Control 1(3)

    Article  Google Scholar 

  • Tzeng HW, Hung SK (2009) Design of ball-beam balance control system using neural-fuzzy algorithm. In: IEEE international conference on fuzzy system, pp 1221–1225

  • Viharos ZJ, Kis KB (2015) Survey on neuro-fuzzy systems and their applications in technical diagnostics and measurement. Meas J Int Meas Confed 67:126–136

    Article  Google Scholar 

  • Wang Y, Sun M, Wang Z, Liu Z, Chen Z (2014) A novel disturbance-observer based friction compensation scheme for ball and plate system. ISA Trans 53(2):671–678

    Article  Google Scholar 

  • Yuan D, Zhang Z (2010) Modelling and control scheme of the ball-plate trajectory-tracking pneumatic system with a touch screen and a rotary cylinder. IET Control Theory Appl 4(4):573–589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Bhushan, B. Real-time control of ball balancer using neural integrated fuzzy controller. Artif Intell Rev 53, 351–368 (2020). https://doi.org/10.1007/s10462-018-9658-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-018-9658-7

Keywords

Navigation