Skip to main content
Log in

How cognitive engagement fluctuates during a team-based learning session and how it predicts academic achievement

  • Published:
Advances in Health Sciences Education Aims and scope Submit manuscript

Abstract

The objective of the paper is to report findings of two studies that attempted to find answers to the following questions: (1) What are the levels of cognitive engagement in TBL? (2) Are there differences between students who were more exposed to TBL than students who were less exposed to TBL? (3) To which extent does cognitive engagement fluctuate as a function of the different activities involved in TBL? And (4) How do cognitive engagement scores collected over time correlate with each other and with academic achievement? The studies were conducted with Year-1 and -2 medical students enrolled in a TBL curriculum (N = 175, 62 female). In both studies, six measurements of cognitive engagement were taken during the distinct TBL activities (preparation phase, individual/team readiness assurance test, burning questions, and application exercises). Data were analysed by means of one-way repeated-measures ANOVAs and path modelling. The results of the repeated-measures ANOVA revealed that cognitive engagement systematically fluctuated as a function of the distinct TBL activities. In addition, Year-1 students reported significantly higher levels of cognitive engagement compared to Year-2 students. Finally, cognitive engagement was a significant predictor of performance (β = .35). The studies presented in this paper are a first attempt to relate the different activities undertaken in TBL with the extent to which they arouse cognitive engagement with the task at hand. Implications of these findings for TBL are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the student engagement instrument. Journal of School Psychology, 44(5), 427–445.

    Article  Google Scholar 

  • Assor, A., Kaplan, H., & Roth, G. (2002). Choice is good, but relevance is excellent: Autonomy-enhancing and suppressing teacher behaviours predicting students’ engagement in schoolwork. British Journal of Educational Psychology, 72(2), 261–278.

    Article  Google Scholar 

  • Burgess, A. W., McGregor, D. M., & Mellis, C. M. (2014). Applying established guidelines to team-based learning programs in medical schools: A systematic review. Academic Medicine, 89(4), 678–688. https://doi.org/10.1097/acm.0000000000000162.

    Article  Google Scholar 

  • Chlapana, E. (2016). An intervention programme for enhancing kindergarteners’ cognitive engagement and comprehension skills through reading informational texts. Literacy, 50(3), 125–132.

    Article  Google Scholar 

  • Clarke, J., & Wells, M. (2008). Making technology work for you: Why might academic staff want to engage with and promote e-learning? A case study. Reading, NR: Academic Conference LTD.

    Google Scholar 

  • Corno, L., & Mandinach, E. (1983). The role of cognitive engagement in classroom learning and motivation. Educational Psychologist, 18(2), 88–108.

    Article  Google Scholar 

  • Cumming, T. M., & Rodriguez, C. D. (2013). Integrating the iPad into language arts instruction for students with disabilities: Engagement and perspectives. Journal of Special Education Technology, 28(4), 43–52.

    Article  Google Scholar 

  • Davidson, L. (2009). Educational innovation in an undergraduate medical course: Implementation of a blended e-learning, team-based learning model. Thesis (Master, Education), Queen's University Kingston, Ontario, Canada. http://hdl.handle.net/1974/1667.

  • Fatmi, M., Hartling, L., Hillier, T., Campbell, S., & Oswald, A. E. (2013). The effectiveness of team-based learning on learning outcomes in health professions education: BEME Guide No. 30. Medical Teacher, 35(12), e1608–e1624.

    Article  Google Scholar 

  • Greene, B. A., & Miller, R. B. (1996). Influences on achievement: Goals, perceived ability, and cognitive engagement. Contemporary Educational Psychology, 21(2), 181–192.

    Article  Google Scholar 

  • Greene, B. A., Miller, R. B., Crowson, H. M., Duke, B. L., & Akey, K. L. (2004). Predicting high school students’ cognitive engagement and achievement: Contributions of classroom perceptions and motivation. Contemporary Educational Psychology, 29(4), 462–482.

    Article  Google Scholar 

  • Haidet, P., Levine, R. E., Parmelee, D. X., Crow, S., Kennedy, F., Kelly, P. A., et al. (2012). Perspective: Guidelines for reporting team-based learning activities in the medical and health sciences education literature. Academic Medicine, 87(3), 292–299. https://doi.org/10.1097/ACM.0b013e318244759e.

    Article  Google Scholar 

  • Hancock, G. R., & Mueller, R. O. (2001). Rethinking construct reliability within latent systems. In R. Cudeck, S. D. Toit, & D. Sörbom (Eds.), Structural equation modeling: Present and future—A festschrift in honor of Karl Jöreskog (pp. 195–216). Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  • Kelly, P. A., Haidet, P., Schneider, V., Searle, N., Seidel, C. L., & Richards, B. F. (2005). A comparison of in-class learner engagement across lecture, problem-based learning, and team learning using the STROBE classroom observation tool. Teaching and Learning in Medicine, 17(2), 112–118. https://doi.org/10.1207/s15328015tlm1702_4.

    Article  Google Scholar 

  • Koles, P. G., Stolfi, A., Borges, N. J., Nelson, S., & Parmelee, D. X. (2010). The impact of team-based learning on medical students’ academic performance. Academic Medicine, 85(11), 1739–1745. https://doi.org/10.1097/ACM.0b013e3181f52bed.

    Article  Google Scholar 

  • Lee, J. L. (2008). Memory reconsolidation mediates the strengthening of memories by additional learning. Nature Neuroscience, 11(11), 1264–1266.

    Article  Google Scholar 

  • McInerney, M. J., & Fink, L. D. (2003). Team-based learning enhances long-term retention and critical thinking in an undergraduate microbial physiology course. Journal of Microbiology & Biology Education, 4(1), 3–12.

    Article  Google Scholar 

  • Meece, J. L., Blumenfeld, P. C., & Hoyle, R. H. (1988). Students’ goal orientations and cognitive engagement in classroom activities. Journal of Educational Psychology, 80(4), 514–523.

    Article  Google Scholar 

  • Michaelsen, L. K., Knight, A. B., & Fink, L. D. (Eds.). (2002). Team-based learning: A transformative use of small groups. Portsmouth, NH: Greenwood publishing group.

    Google Scholar 

  • Michaelsen, L. K., & Sweet, M. (2008). The essential elements of team-based learning. New Directions for Teaching and Learning, 116, 7–27.

    Article  Google Scholar 

  • Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7(2), 217–227. https://doi.org/10.1016/s0959-4388(97)80010-4.

    Article  Google Scholar 

  • Nieder, G. L., Parmelee, D. X., Stolfi, A., & Hudes, P. D. (2005). Team-based learning in a medical gross anatomy and embryology course. Clinical Anatomy, 18(1), 56–63. https://doi.org/10.1002/ca.20040.

    Article  Google Scholar 

  • Parmelee, D. X., & Michaelsen, L. K. (2010). Twelve tips for doing effective team-based learning (TBL). Medical Teacher, 32(2), 118–122.

    Article  Google Scholar 

  • Rotgans, J. I., & Schmidt, H. G. (2011). Cognitive engagement in the problem-based learning classroom. Advances in Health Sciences Education, 16(4), 465–479. https://doi.org/10.1007/s10459-011-9272-9.

    Article  Google Scholar 

  • Schmidt, M., Benzing, V., & Kamer, M. (2016). Classroom-based physical activity breaks and children’s attention: Cognitive engagement works! Frontiers in Psychology, 7, 1474.

    Google Scholar 

  • Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107–120.

    Article  Google Scholar 

  • Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272–1278. https://doi.org/10.1038/nature04286.

    Article  Google Scholar 

  • Vasan, N. S., DeFouw, D. O., & Compton, S. (2009). A survey of student perceptions of team-based learning in anatomy curriculum: Favorable views unrelated to grades. Anatomical Sciences Education, 2(4), 150–155. https://doi.org/10.1002/ase.91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome I. Rotgans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotgans, J.I., Schmidt, H.G., Rajalingam, P. et al. How cognitive engagement fluctuates during a team-based learning session and how it predicts academic achievement. Adv in Health Sci Educ 23, 339–351 (2018). https://doi.org/10.1007/s10459-017-9801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10459-017-9801-2

Keywords

Navigation