Skip to main content
Log in

Response of forage production to drought in silvopastoral systems in Argentina

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

An increase in the frequency and intensity of agricultural and ecological droughts is expected. This study aimed to assess the response of annual forage dry matter production (AFP) to drought in 22 sites across Argentina’s silvopastoral systems (SPS) in native forests and forest plantations and compare it to grasslands and treeless pastures. The AFP was evaluated using a one-way ANOVA with a factorial design, considering the productive system (SPS and grassland/treeless pasture) and hydrological condition year (normal and dry) as factors. Mean AFP ranged from 195 kg DM ha−1 yr−1 to 18,520 kg DM ha−1 yr−1. The results showed that AFP varied according to aridity categories, drought intensity, and forage type (grassland and pastures). Under drought intensity ≤ 35% (normal year), SPS showed higher AFP than grassland/pastures, while severe drought intensities > 35% (dry year) resulted in the opposite response. The relative response (RR) of AFP in SPSs, compared to grasslands/pastures ranged from -225% to + 100%, depending on the site and drought intensity. Principal component analysis of the RR revealed that SPS in semi-arid and semi-humid sites had lower soil carbon and nitrogen concentrations, fewer forage species, and higher AFP values in dry years compared with treeless systems. The information provided in this study may assist in decision-making processes toward more resilient livestock production systems in Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altieri MA, Toledo VM (2011) The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignity and empowering peasants. J Peasant Stud 38:587–612

    Article  Google Scholar 

  • Atanasio M, Pernochi A, Chiossone J (2018) Productividad maderera y forrajera de un sistema silvopastoril de Prosopis alba de variable densidad de árboles y radiación. Proceedings IV Congreso Internacional de Sistemas Silvopastoriles. Villa La Angostura, Argentina, pp 98–106

  • Bahamonde H, Peri PL, Alavarez R, Barneix A, Moretto A, Martínez Pastur G (2012a) Producción y calidad de gramíneas en un gradiente de calidades de sitio y coberturas en bosques de Nothofagus antarctica (G. Forster) Oerst. en Patagonia. Ecol Austral 22:62–73

    Google Scholar 

  • Bahamonde H, Peri PL, Alavarez R, Barneix A, Moretto A, Martínez Pastur G (2012b) Litter decomposition and nutrients dynamics in Nothofagus antarctica forests under silvopastoral use in Southern Patagonia. Agrofor Syst 84:345–360

    Article  Google Scholar 

  • Berdugo M, Soliveres S, Kéfi S, Maestre FT (2019) The interplay between facilitation and habitat type drives spatial vegetation patterns in global drylands. Ecography 42:755–767

    Article  Google Scholar 

  • Blaser WJ, Sitters J, Hart SP, Edwards P, Olde Venterink H (2013) Facilitative or competitive effects of woody plants on understorey vegetation depend on Nfixation, canopy shape and rainfall. J Ecol 101:1598–1603

    Article  Google Scholar 

  • Blaser WJ, Oppong J, Hart SP, Landolt J, Yeboah E, Six J (2018) Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat Sustain 1:234–239

    Article  Google Scholar 

  • Bloor JM, Bardgett RD (2012) Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: Interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol Evol Syst 14:193–204

    Article  Google Scholar 

  • Casanova-Lugo F, Villanueva-López G, Alcudia-Aguilar A, Nahed-Toral J, Medrano-Pérez OR, Jiménez-Ferrer G, Alayón-Gamboa JA, Raj Aryal D (2022) Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangel Ecol Manage 80:31–38

    Article  Google Scholar 

  • De Martonne E (1926) Une nouvelle fanction climatologique: l’ índice d’ aridite. Meteorologie 2:449–458

    Google Scholar 

  • Devkota NR, Kemp PD, Valentine I, Hodgson J (2000) Shade tolerance of pasture species in relation to deciduous tree, temperate silvopastoral systems. Proc Agron Soc New Zeal 30:101–107

    Google Scholar 

  • Dohn J, Dembélé F, Karembé M, Moustakas A, Amévor KA, Hanan NP (2013) Tree effects on grass growth in savannas: Competition, facilitation and the stress-gradient hypothesis. J Ecol 101:202–209

    Article  Google Scholar 

  • Ferrando C, Blanco L, Biurrun F, Namur P, Recalde D, Ávila R, Orionte E (2013) Efecto del rolado y siembra de Buffel sobre la evolución del estrato graminoso en un arbustal degradado del Chaco Árido. Semiárida 22:23–28

    Google Scholar 

  • Gándara L, Pereira M, Núñez F, Quiroz O, Perrens G, Yogi D, Riva de Neyra L, Álvarez O (2020) Dinámica de la biomasa aérea de un pastizal en diferentes sistemas silvopastoriles de Corrientes. Proceedings 43º Congreso Argentino de Producción Animal. Asociación Argentina de Producción Animal, p 286

  • González-Hernández MP, Silva-Pando FJ (1996) Grazing effects of ungulates in a Galician oak forest (NW Spain). For Ecol Manage 88:65–70

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Hernández-Salmerón IR, Holmgren M (2022) Global metaanalysis: Sparse tree cover increases grass biomass in dry pastures. Front Environ Sci 10:949185

    Article  Google Scholar 

  • Holmgren M, Gomez-Aparicio L, Quero JL, Valladares F (2012) Nonlinear effects of drought under shade: Reconciling physiological and ecological models in plant communities. Oecologia 169:293–305

    Article  PubMed  Google Scholar 

  • IPCC (2021) Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–484

    Article  CAS  PubMed  Google Scholar 

  • Koricheva J, Gurevitch J, Mengersen K (2013) Handbook of meta-analysis in ecology and evolution. Princeton University Press

    Book  Google Scholar 

  • Ledesma R, Kunst C, Bravo S, Leiva M, Lorea L, Godoy J, Navarrete V (2018) Developing a prescription for brush control in the Chaco region, effects of combined treatments on the canopy of three native shrub species. Arid Land Res Manag 32:351–366

    Article  Google Scholar 

  • Ludwig F, Dawson TE, Prins HHT, Berendse F, de Kroon H (2004) Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift. Ecol Lett 7:623–631

    Article  Google Scholar 

  • Martínez Pastur G, Cellini JM, Chaves J, Rodriguez Souilla J, Benítez J, Rosas Y, Soler Esteban R, Lencinas MV, Peri PL (2022) Changes in forest structure modify understory and livestock occurrence along the natural cycle and different management strategies in Nothofagus antarctica forests. Agrofor Syst 96:1039–1052

    Article  Google Scholar 

  • Mazía N, Moyano J, Perez L, Aguiar S, Garibaldi LA, Schlichter T (2016) The sign and magnitude of tree–grass interaction along a global environmental gradient. Glob Ecol Biogeogr 25:1510–1519

    Article  Google Scholar 

  • Moustakas A, Kunin WE, Cameron TC, Sankaran M (2013) Facilitation or competition? Tree effects on grass biomass across a precipitation gradient. PLoS ONE 8:e57025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peri PL, Moot DJ, McNeil DL (2003) A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen and water regimes. Grass Forage Sci 58(4):416–430

    Article  Google Scholar 

  • Peri PL, Moot DJ, McNeil DL (2006) Validation of a canopy photosynthesis model for cocksfoot pastures grown under different light regimes. Agrofor Syst 67:259–272

    Article  Google Scholar 

  • Peri PL, Lucas RJ, Moot DJ (2007) Dry matter production, morphology and nutritive value of Dactylis glomerata growing under different light regimes. Agrofor Syst 70:63–79

    Article  Google Scholar 

  • Peri PL, Dube F, Varella A (2016a) Silvopastoral systems in Southern South America, Advances in Agroforestry, Springer International Publishing, Switzerland

  • Peri PL, Bahamonde H, Lencinas MV, Gargaglione V, Soler R, Ormaechea S, Martínez Pastur G (2016b) A review of silvopastoral systems in native forests of Nothofagus antarctica in southern Patagonia, Argentina. Agrofor Syst 90:933–960

    Article  Google Scholar 

  • Peri PL, Rosas YM, Lopez DR, Lencinas MV, Cavallero L, Martínez Pastur G (2022) Conceptual framework to define management strategies for silvopastoral systems in native forests. Ecol Austral 32:749–766

    Article  Google Scholar 

  • Peri PL (2012) Implementación, manejo y producción en SSP: enfoque de escalas en la aplicación del conocimiento aplicado. Proceedings Segundo Congreso Nacional de Sistemas Silvopastoriles, Ediciones INTA, Santiago del Estero, Argentina, pp 8–21

  • Prudêncio Lemes A, Rossetto Garcia A, Macedo Pezzopane JR, Zandonadi Brandão F, Watanabe YF, Fernandes Cooke R, Sponchiado M, Paro de Paz CC, Camplesi AC, Binelli M, Unno Gimenes L (2021) Silvopastoral system is an alternative to improve animal welfare and productive performance in meat production systems. Sci Rep 11:14092

    Article  Google Scholar 

  • Roberts MR, Gilliam FS (1995) Disturbance effects on herbaceous layer vegetation and soil nutrients in Populus forests of northern lower Michigan. J Veg Sci 6:903–912

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops JM (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  CAS  PubMed  Google Scholar 

  • Trinco FD (2022) Compromisos entre productividad forrajera y cobertura arbórea en bosques andinos norpatagónicos. Tesis doctoral. Universidad Nacional del Comahue, 257 pp

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PLP., field work, PLP, LG, FT, MAA, NCC, EC, NM, RL, FG, JL, LB, CC, AVM, SV, BR, LL, MVL, MT, EM, LP, SNC, NB, RL, RPE, FC, ML, FU, JB, EC, LC, FRB and GMP, analysis, PLP, ST and GMP, drafting, PLP, LG, FT, MAA, NCC, EC, NM, RL, FG, JL, LB, CC, AVM and GMP, review and editing, PLP.

Corresponding author

Correspondence to Pablo L. Peri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peri, P.L., Toledo, S., Gándara, L. et al. Response of forage production to drought in silvopastoral systems in Argentina. Agroforest Syst (2024). https://doi.org/10.1007/s10457-024-00986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10457-024-00986-9

Keywords

Navigation