Skip to main content

Advertisement

Log in

Root distribution of Adansonia digitata, Faidherbia albida and Borassus akeassii along a climate gradient in Senegal

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

In order to understand the ecophysiology of sub-Sahelian tree species and to optimize their use in agroforestry, studies on tree root distribution are essential. The aim of this study was to investigate the root distribution of three sub-Sahelian tree species, Adansonia digitata, Faidherbia albida and Borassus akeassii, in three sites along a precipitation and soil gradient in Senegal. Root density maps observed on trench walls and soil-coring methods were used to characterize variations in root density of mature trees. Coarse and fine root distribution was strongly influenced by the site conditions, with root density being highest in the humid site for all tree species. B. akeassii had the highest root density compared to the other two species. Fine root biomass was concentrated in the 0–30 cm soil layer for A. digitata and from 30 to 60 cm for B. akeassii and F. albida. Laterally, the fine root biomass decreased substantially with increasing distance from the trees. Understanding the root distribution of sub-Sahelian tree species across climatic conditions could help to reduce competition between crops and perennials in agroforestry parklands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aanderud ZT, Richards JH (2009) Hydraulic redistribution may stimulate decomposition. Biogeochemistry 95:323–333. https://doi.org/10.1007/s10533-009-9339-3

    Article  Google Scholar 

  • Anderson LS, Sinclair F (1993) Ecological interactions in agroforestry systems. Agroforestry Abstracts 6:57–91

    Google Scholar 

  • Bayala J, Prieto I (2020) Water acquisition, sharing and redistribution by roots: applications to agroforestry systems. Plant Soil 453:17–28. https://doi.org/10.1007/s11104-019-04173-z

    Article  CAS  Google Scholar 

  • Bayala J, Sanou J, Teklehaimanot Z, Ouedraogo SJ, Kalinganire A, Coe R, Noordwijk MV (2015) Advances in knowledge of processes in soil–tree–crop interactions in parkland systems in the West African Sahel: a review. Agric Ecosyst Environ 205:25–35

    Article  Google Scholar 

  • Bazié HR, Bayala J, Zombre ́G, Sanou J, Ilstedt, (2012) Separating competition-related factors limiting crop performance in an agroforestry parkland system in Burkina Faso. Agrofor Syst 84:377–388. https://doi.org/10.1007/s10457-012-9483-y

    Article  Google Scholar 

  • Birnbaum P (2012) Biodiversité au Sahel. Les forêts du Mali. Édn Quae CIRAD, IFEMER, INRA, IRSTEA, France. p 208

  • Camara B, Sagna B, Ngom D, Niokane M, Gomis ZD (2017) Importance socioéconomique de Elaeis guineensis Jacq. (Palmier á huile) en basse-Casamance (Senegal). Europ Sci J Ed 13: 214–230. https://doi.org/10.19044/esj.2017.v13n12p214

  • Cazet M (1989) Les plantations linéaires denses sur les sols sableux dégradés de la zone Centrale-Nord du Sénégal. Comportement et effets sur les cultures adjacentes de quelques espèces locales et introduites. Revue Bois Et Forêts Des Tropiques 222:27–37

    Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae). Am J Bot 93:1251–1264

    Article  PubMed  Google Scholar 

  • De Kroon H (2007) How do roots interact? Science 318:1562–1563

    Article  PubMed  Google Scholar 

  • Dupuy NC, Dreyfus BL (1992) Bradyrhizobium populations occur in deep soil under the leguminous tree Acacia albida. Appl Environ Microbiol 58:2415–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groot JJR, Traoré M, Koné D (1998) Description du système racinaire de trois espèces fourragères en zone soudano-sahélienne: Andropogon gayanus, Vigna unguiculata et Stylosanthes hamata. Biotechnol Agron Soc Environ 2:106–119

    Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7:109. https://doi.org/10.1038/s41597-020-0453-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu XS, Brierley G, Zhu HL, Li GR, Fu JT, Mao XQ, Yu QQ, Qao N (2013) An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, northeast Qinghai–tibet Plateau, China. J Mt Sci 10:668–686. https://doi.org/10.1007/s11629-013-2584-x

    Article  Google Scholar 

  • IUSS Working Group WRB, (2015) World reference base for soil resources 2014, Update 2015. In: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, Rome: FAO.

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  CAS  PubMed  Google Scholar 

  • Jansen L, Darr D, Hansohm N, Gebauer J, Meinhold K, Munthali CRY, Wichern F (2020) Variation in baobab Adansonia digitata L. root tuber development and leaf number among different growth conditions for five provenances in Malawi. J Agricult Rural Develop Trop Subtrop 121:161–172. https://doi.org/10.17170/kobra-202007291508

    Article  Google Scholar 

  • Joly H (1992) The genetics of Acacia albida (syn. Faidherbia albida). In: Vandenbelt RJ (ed) Faidherbia albida in the West African Semi-Arid Tropics. ICRISAT, Patancheru India, pp 53–62

    Google Scholar 

  • Jonathan PL (2019) Root phenotypes for improved nutrient capture: an under exploited opportunity for global agriculture. New Phytolog 223:548–564

    Article  Google Scholar 

  • Jonsson K (1995) Agroforestry in dry savannah areas in Africa: interactions between trees, soils and crops. PhD dissertation. Swedish University of Agricultural Sciences, Umea, Sweden

  • Jourdan C, Rey H (1997) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48

    Article  CAS  Google Scholar 

  • Jourdan C (1995) Modélisation de l’architecture et du développement du systéme racinaire du palmier á huile. Ph.D Dissertation University of Montpellier II. p 243

  • Ju C, Buresh RJ, Wang Z, Zhang H, Liu L, Yang J, Zhang J (2015) Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crop Res 175:47–55

    Article  Google Scholar 

  • Kulmatiski A, Sprous SRC, Beard KH (2017) Soil type more than precipitation determines fine-root abundance in savannas of Kruger national park, South Africa. Plant Soil 417:523–533. https://doi.org/10.1007/s11104-017-3277-y

    Article  CAS  Google Scholar 

  • Marone D (2015) Étude du potentiel de stock de carbone d’espèces agroforestières et de leurs traits fonctionnels en lien avec les systèmes d’utilisation des terres au Sénégal. Dissertation, Université de Laval: Canada. p 166

  • Mulatya JM, Wilson J, Ong CK, Deans JD, Sprent JJ (2002) Root architecture of provenances, seedlings and cuttings of Melia volkensii: implications for crop yield in dryland agroforestry. Agrofores Syst 56:65–72

    Article  Google Scholar 

  • Mulia R, Dupraz C (2006) Unusual fine root distributions of two deciduous tree species in southern France: What consequences for modelling of tree root dynamics? Plant Soil 281:71–85

    Article  CAS  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosystems 141:426–442

    Article  Google Scholar 

  • Pallo FJP, Sawadogo N, Sawadogo L, Sedogo MP, Assa A (2008) Statut de la matière organique des sols dans la zone sud-soudanienne au Burkina Faso Biotechnologie. Agron Société Et Environ 12:291–301

    CAS  Google Scholar 

  • R Core Team (2020) A language and environment for statistical computing R Foundation for statistical computing, (Vienna, Austria URL)

  • Rahul J, Jain MK, Singh SP, Kamal R, Anuradha K, Naz A, Gupta AK, Mrityunjay SK (2015) Adansonia digitata L. (baobab): a review of traditional information and taxonomic description Asian. Pac J Trop Biomed 5:79–84

    Article  CAS  Google Scholar 

  • Roupsard O, Ferhi A, Granier A, Pallo F, Depommier D, Mallet B, Joly H, Dreyer E (1999) Reverse phenology and dry-season water uptake by Faidherbia albida (Del) A Chev in an agroforestry parkland of Sudanese west Africa. Funct Ecol 13:460–472

    Article  Google Scholar 

  • Roupsard O, Audebert A, Ndour AP, Dauphin CC, Agbohessou Y, Sanou J, Koala J, Faye E, Sambakhe D, Jourdan C, le Maire GL, Tall L, Sanogo D, Seghieri J, Cournac L, Leroux L (2020) How far does the tree affect the crop in agroforestry? New spatial analysis methods in a Faidherbia parkland. Agr Ecosyst Environ 296:106928

    Article  Google Scholar 

  • Salako KV, Moreira F, Gbedomon RC et al (2018) Traditional knowledge and cultural importance of Borassus aethiopum Mart in Benin: interacting effects of socio-demographic attributes and multi-scale abundance. J Ethnobiol Ethnomed 14:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanou J, Bayala J, Teklehaimanot Z, Bazie P (2012) Effect of shading by baobab (Adansonia digitata) and néré (Parkia biglobosa) on yields of millet (Pennisetum glaucum) and taro (Colocasia esculenta) in parkland systems in Burkina Faso. West Africa Agroforest Syst 85:431–441

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140

    Article  Google Scholar 

  • Schroth G, Zech W (1995) Root length dynamics in agroforestry with Gliricidia sepium as compared to sole cropping in the semi-deciduous rainforest zone of West Africa. Plant Soil 170:297–306

    Article  CAS  Google Scholar 

  • Schroth G, Oliver R, Balle P, Gnahoua GM, Kanchanakanti N, Leduc B, Mallet B, Peltier R, Zech W (1995) Alley cropping with Gliricidia sepium on a high base status soil following forest clearing: effects on soil conditions, plant nutrition and crop yields. Agroforestry Syst 32:261–276. https://doi.org/10.1007/BF00711714

    Article  Google Scholar 

  • Schroth G, Sinclair FL (2003) Trees, crops and soil fertility concepts and researches methods Wallingford, UK, CABI

  • Sokalska DI, Haman DZ, Szewczuk A, Sobota J, Deren D (2009) Spatial root distribution of mature apple trees under drip irrigation system. Agric Water Manag 96:917–924. https://doi.org/10.1016/j.agwat.2008.12.003

    Article  Google Scholar 

  • Van Noordwijk M, Purnomoshidi P (1995) Root architecture in relation to tree-soil-crop inter-actions and shoot pruning in agroforestry. Agrofor Syst 30:161–173

    Article  Google Scholar 

  • Walkley A, Black CA (1934) An examination of the degtjareff method for determining soil organic matter and a proposal modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wilczynski CJ, Pickett STA (1993) Fine root biomass within experimental canopy gaps: evidence for a below-ground gap. J Veg Sci 4:571–574

    Article  Google Scholar 

  • Wood PJ (1989) Faidherbia albida (Del) a chev (synonym: Acacia albida Del): a monograph. CTFT, Nogent-sur-Marne, France

    Google Scholar 

  • Yameogo J, Samandoulgou Y, Belem M (2016) Le rônier Borassus akeassii BOG dans les parcs agroforestiers à Kokologho, Sakoinse et Ramongo dans la province du Boulkiemde, centre-ouest du Burkina Faso. J Appl Biosci 100:9557–9566

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Saliou Fall (LCM) and team for access to facilities during root analysis, and Dr. Cheikh O. Samb and M. Momar Wade for assistance during the site prospection. We warmly thank the populations of the three different sites for assistance and permission to work in their fields. We are grateful to Prof. Bo Markussen of the Department of Mathematical Sciences, University of Copenhagen, and Mr. Aubin H. Abdoulaye, statistical engineer at ENSAE-Dakar, for help with statistical analysis. We thank Dr. Antoine Sambou (Assane Seck University of Ziguinchor) and Dr. Hyacinthe Sambou (Cheikh Anta Diop University) for help with the map in Fig. S1 and two reviewers for their constructive comments. The work was supported by the Islamic Development Bank (IDB), grant no. 600035540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatou Gning.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicting financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3990 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gning, F., Jourdan, C., Marone, D. et al. Root distribution of Adansonia digitata, Faidherbia albida and Borassus akeassii along a climate gradient in Senegal. Agroforest Syst 97, 605–615 (2023). https://doi.org/10.1007/s10457-023-00813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-023-00813-7

Keywords

Navigation