Skip to main content

Advertisement

Log in

Implications of landscape configuration on understory forage productivity: a remote sensing assessment of native forests openings

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Sound management of native forests used for cattle grazing requires understanding the dynamics of forage productivity in the openings. Despite their importance, forage productivity drivers in highly heterogeneous forested landscapes, or their variability over the year, are still unclear. The aim of this work is to find predictors of Normalized Difference Vegetation Index (NDVI) variation in the openings of native temperate forests and to evaluate how these predictors change within the growing season. We used high spatial resolution remote sensing imagery from NW Patagonia to separate forest openings from tree dense canopy. We obtained data of each opening related with herbaceous and shrub forage productivity and calculated landscape metrics. We estimated a multiple linear regression model for predicting NDVI in each season. Beyond known variables related with forage productivity (altitude, precipitation, etc.), the shape of forest’ openings appeared as relevant in predicting NDVI. Higher values of forest opening perimeters were related with a decrease in NDVI in spring when soil water content is not limiting and conversely with an increase in NDVI in summer when water is limiting growth. These results suggest that environmental drivers such as temperature and soil moisture inside the opening, and competition or facilitation process between trees and grasses are mediated by the shape of the opening. Management of heterogeneous native forests for cattle raising requires considering the shape of the openings to maximize forage productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from CNES 2016 & 2017, reproduced by CONAE under Spot Image/AIRBUS license, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Rest of data are published and available from the authors upon reasonable request (see Online Resource 2).

Code availability

We used software applications QGIS3.8©, ENVI 5.3© and R3.5.2©.

References

  • Anderson D, Sweeney D, Williams T (2012) Estadística para negocios y economía, 11a edn. México, D.F

  • Bahamonde HA, Peri PL, Álvarez R, Barneix A (2012) Producción y calidad de gramíneas en un gradiente de calidades de sitio y coberturas en bosques de Nothofagus antarctica (G. Forster) Oerst. en Patagonia. Asociación Argentina de Ecología; Ecología Austral 22(1):62–73

  • Baldassini P, Despósito C, Piñeiro G, Paruelo JM (2018) Silvopastoral systems of the Chaco forests: effects of trees on grass growth. J Arid Environ 156:87–95. https://doi.org/10.1016/j.jaridenv.2018.05.008

    Article  Google Scholar 

  • Belsky AJ (1994) Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition. Ecology 75:922–932. https://doi.org/10.2307/1939416

    Article  Google Scholar 

  • Bestelmeyer BT, Andrew Ash, Brown JR et al (2017) Rangeland systems

  • Bestelmeyer BT, Brown JR, Havstad KM et al (2003) Development and use of state-and-transition models for rangelands. J Range Manag 56:114–126

  • Bianchi E, Villalba R, Viale M et al (2016) New precipitation and temperature grids for northern Patagonia: advances in relation to global climate grids. J Meteorol Res 30:38–52 (2016). https://doi.org/10.1007/s13351-015-5058-y

    Article  Google Scholar 

  • Borowik T, Pettorelli N, Sönnichsen L, Jędrzejewska B (2013) Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. Eur J Wildl Res 59:675–682. https://doi.org/10.1007/s10344-013-0720-0

    Article  Google Scholar 

  • Briske DD, Fuhlendorf SD, Smeins FE (2005) State-and-transition models, thresholds, and rangeland health: a synthesis of ecological concepts and perspectives. Rangel Ecol Manag 58:1–10. https://doi.org/10.2111/1551-5028(2005)58%3c1:SMTARH%3e2.0.CO;2

    Article  Google Scholar 

  • Bussoni A, Alvarez J, Cubbage F et al (2019) Diverse strategies for integration of forestry and livestock production. Agrofor Syst 93:333–344. https://doi.org/10.1007/s10457-017-0092-7

    Article  Google Scholar 

  • Bustos C (1995) El clima en el valle del Río Manso Inferior (Río Negro). 12

  • Cameron M (2016) Cows and clearcutting: how can we manage both in an aspen forest? En: 10th International Rangeland Congress. p 265

  • Chen J, Saunders SC, Crow TR et al (1999) Microclimate in forest ecosystem and landscape ecology—variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297. https://doi.org/10.2307/1313612

    Article  Google Scholar 

  • De Araújo RA, Rodrigues RC, Costa S et al (2016) Forage intake and performance of cattle in silvo-pastoral systems and monoculture of Marandu in Pre-Amazon region. African J Agri Res 11:1849–1857. https://doi.org/10.5897/AJAR2016.10795

  • Easdale MH, Aguiar MR (2012) Regional forage production assessment in arid and semi-arid rangelands—a step towards social-ecological analysis. J Arid Environ 83:35–44. https://doi.org/10.1016/j.jaridenv.2012.03.002

    Article  Google Scholar 

  • Ergon SG, Korhonen P et al (2018) How can forage production in Nordic and Mediterranean Europe adapt to the challenges and opportunities arising from climate change? Eur J Agron 92:97–106. https://doi.org/10.1016/j.eja.2017.09.016

    Article  Google Scholar 

  • Feng FL, Wu CC (2018) Development and validation of ecological site quality model: an example of Chamaecyparis formosensis in Taiwan. J For Plann 22(2): 77–83. https://doi.org/10.20659/jfp.22.2_77

  • Forbes ES, Cushman JH, Burkepile DE, Young TP, Klope M, Young HS (2019) Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct Ecol 33:1597–1610

    Article  Google Scholar 

  • Garibaldi LA, Aristimuño FJ, Oddi FJ, Tiribelli F (2017) Inferencia multimodelo en ciencias sociales y ambientales. Ecol Austral 348–363. https://doi.org/10.25260/EA.17.27.3.0.513

  • Garibaldi LA, Oddi FJ, Aristimuño FJ, Behnisch AN (2019) Modelos estadísticos en lenguaje R. San Carlos de Bariloche

  • Garroutte EL, Hansen AJ, Lawrence RL (2016) Using NDVI and EVI to map spatiotemporal variation in the biomass and quality of forage for migratory elk in the Greater Yellowstone Ecosystem. Remote Sens. https://doi.org/10.3390/rs8050404

  • Gautam H, Arulmalar E, Kulkarni MR, Vidya TNC (2019) NDVI is not reliable as a surrogate of forage abundance for a large herbivore in tropical forest habitat. Biotropica 51:443–456. https://doi.org/10.1111/btp.12651

    Article  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2009) The climate near the ground. Rowman & Littlefield

    Google Scholar 

  • Godagnone R, Bran DE (2009) Inventario integrado de los recursos naturales de la provincia de Rio Negro. Ediciones INTA

  • Golluscio RA (2009) Receptividad ganadera: marco teórico y aplicaciones prácticas. Ecol Austral 19:215–232

    Google Scholar 

  • González-Hernández MP, Mouronte V, Romero R et al (2020) Plant diversity and botanical composition in an Atlantic heather-gorse dominated understory after horse grazing suspension: comparison of a continuous and rotational management. Glob Ecol Conserv 23. https://doi.org/10.1016/j.gecco.2020.e01134

  • Greenberg CH, Perry RW, Harper CA et al (2011) The role of young, recently disturbed upland hardwood forest as high quality food patches. n: Sustaining Young Forest Communities. Springer, pp 121–141

  • Hanna MM, Steyn-Ross DA, Steyn-Ross M (1999) Estimating biomass for New Zealand pasture using optical remote sensing techniques. Geocarto Int 14:89–94. https://doi.org/10.1080/10106049908542121

    Article  Google Scholar 

  • Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. America (NY) 78:1966–1975. https://doi.org/10.2307/2265937

    Article  Google Scholar 

  • Iglay RB, Conkling TJ, DeVault TL et al (2019) Forage or biofuel: assessing native warm-season grass production among seed mixes and harvest frequencies within a wildlife conservation framework. Southeast Nat 18:1. https://doi.org/10.1656/058.018.0103

    Article  Google Scholar 

  • Karki U, Goodman MS (2015) Microclimatic differences between mature loblolly-pine silvopasture and open-pasture. Agrofor Syst 89:319–325. https://doi.org/10.1007/s10457-014-9768-4

    Article  Google Scholar 

  • Kellas JD, Bird PR, Cumming KN et al (1995) Animal production under a series of Pinus radiata-pasture agroforestry systems in South-West Victoria, Australia. Aust J Agric Res 46:1299–1310. https://doi.org/10.1071/AR9951299

    Article  Google Scholar 

  • La Manna L, Collantes M, Bava J, Rajchenberg M (2008) Seedling recruitment of Austrocedrus chilensis in relation to cattle use, microsite environment and forest disease. Ecol Austral 18(01):027–041

    Google Scholar 

  • Licata JA, Gyenge JE, Fernández ME et al (2008) Increased water use by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. For Ecol Manage 255:753–764. https://doi.org/10.1016/j.foreco.2007.09.061

    Article  Google Scholar 

  • Ludewig K, Donath TW, Zelle B et al (2015) Effects of reduced summer precipitation on productivity and forage quality of floodplain meadows at the Elbe and the Rhine River. PLoS One. https://doi.org/10.1371/journal.pone.0124140

  • Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8:1–4. https://doi.org/10.18637/jss.v008.i18

  • Martinez-Meier A, Fernández ME, Dalla-Salda G et al (2015) Ecophysiological basis of wood formation in ponderosa pine: Linking water flux patterns with wood microdensity variables. For Ecol Manage 346:31–40. https://doi.org/10.1016/j.foreco.2015.02.021

    Article  Google Scholar 

  • Masters RE, Lochmiller RL, Engle DM (1999) Effects of timber harvest and prescribed fire on white-tailed deer forage production. NCASI Tech Bull 21:327–328

    Google Scholar 

  • Maurer T (2013) How to pan-sharpen images using the gram-Schmidt pan-sharpen method – a recipe. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 239–244. https://doi.org/10.5194/isprsarchives-xl-1-w1-239-2013

  • Mazía N, Moyano J, Perez L et al (2016) The sign and magnitude of tree–grass interaction along a global environmental gradient. Glob Ecol Biogeogr 25:1510–1519. https://doi.org/10.1111/geb.12518

    Article  Google Scholar 

  • Murgueitio E (2005) Silvopastoral systems in the neotropics. Int Silvopastoral Sustain L Manag CAB Lugo, España 24–29

  • Oksanen J (2015) Multivariate analysis of ecological communities in R: Vegan Tutorial

  • Özcan M, Gökbulak F (2017) Vegetation characteristics of forest gaps in yuvacik watershed, Izmit/Turkey

  • Peri PL, Dube F, Varella A (2016a) Silvopastoral systems in Southern South America. https://doi.org/10.1007/978-3-319-24109-8

  • Peri PL, Hansen NE, Bahamonde HA et al (2016b) Silvopastoral systems under native forest in patagonia Argentina. In: Silvopastoral systems in Southern South America, pp 117–168. https://doi.org/10.1007/978-3-319-24109-8_6

  • Peri PL, Sturzenbaum MV, Monelos L et al (2005) Productividad de sistemas silvopastoriles en bosques nativos de ñire (Nothofagus antarctica) de Patagonia Austral. Terc Congr For Argentino y Latinoam 1–10

  • Peringer A, Schulze KA, Stupariu I et al (2016) Multi-scale feedbacks between tree regeneration traits and herbivore behavior explain the structure of pasture-woodland mosaics. Landsc Ecol 31:913–927. https://doi.org/10.1007/s10980-015-0308-z

    Article  Google Scholar 

  • Perry DA (1994) Forest ecosystems. The Johns, Maryland

  • Pettorelli N, Vik JO, Mysterud A et al (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510. https://doi.org/10.1016/j.tree.2005.05.011

    Article  PubMed  Google Scholar 

  • Piazza MV, Garibaldi LA, Kitzberger T, Chaneton EJ (2016) Impact of introduced herbivores on understory vegetation along a regional moisture gradient in Patagonian beech forests. For Ecol Manage 366:11–22

    Article  Google Scholar 

  • Postadjian T, Le Bris A, Sahbi H, Mallet C (2017) Investigating the potential of deep neural networks for large-scale classification of very high resolution satellite images. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:183–190. https://doi.org/10.5194/isprs-annals-IV-1-W1-183-2017

    Article  Google Scholar 

  • Robinson NP, Jones MO, Moreno A et al (2019) Rangeland productivity partitioned to sub-pixel plant functional types. Remote Sens 11:1–9. https://doi.org/10.3390/rs11121427

    Article  Google Scholar 

  • Rusch VE, Cavallero L, López DR, Rusch VE, Cavallero L, López DR, Rusch VE, Cavallero L (2016) El Modelo De Estados Y Transiciones Como Herramienta Para La Aplicación De La Ley 26331. Patagonia Forestal 1:20–27

    Google Scholar 

  • Sanaei A, Li M, Ali A (2019) Topography, grazing, and soil textures control over rangelands’ vegetation quantity and quality. Sci Total Environ 697:134153. https://doi.org/10.1016/j.scitotenv.2019.134153

    Article  CAS  PubMed  Google Scholar 

  • SAyDS & CIEFAP (2016) Actualización de la Clasificación de Tipos Forestales y Cobertura del Suelo de la Región Bosque Andino Patagónico. Informe Final. CIEFAP.

  • SIPHN (2019) Base de Datos Hidrológica Integrada. https://www.argentina.gob.ar/obras-publicas/hidricas/base-de-datoshidrologica-integrada

  • Thompson MW, Shaw MG, Umber RW, Skeen, JE, Thackston RE (1991) Effects of herbicides and burning on overstory defoliation and deer forage production. Wildlife Society Bulletin (1973–2006) 19(2):163–170. http://www.jstor.org/stable/3782324

  • Van Miegroet H, Hysell MT, Johnson AD (2010) Soil microclimate and chemistry of spruce-fir tree Islands in Northern Utah. Soil Sci Soc Am J 64:1515. https://doi.org/10.2136/sssaj2000.6441515x

    Article  Google Scholar 

  • Wangchuk K, Darabant A, Gratzer G, Wurzinger M, Zollitsch W (2015) Forage yield and cattle carrying capacity differ by understory type in conifer forest gaps. Livestock Sci 180:226–232. https://doi.org/10.1016/j.livsci.2015.08.003

    Article  Google Scholar 

  • Yu X, Zhang M, Yang H, Chen C (2020) An NFI-based site quality evaluation of Chinese fir plantation. J Sustain for 39(2):137–152. https://doi.org/10.1080/10549811.2019.1623051

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful with Comisión Nacional de Actividades Espaciales (CONAE) for sharing the SPOT imagery used for the analysis and the University of Groningen (RUG) for the institutional support. Also we acknowledge F. Oddi who helped in early stages when analyzing NDVI datasets; O. Bruzzone, P. Willems and M. Patiño for statistical analysis recommendations; and S. Hara, L. Laborda and V. Alvarez for writing suggestions.

Funding

This work was supported by grants from Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Proyectos de Investigación Científica y Tecnológica de Argentina (ANCyPT, PICT-2016–0305), and we acknowledge World Wildlife Fund (WWF) and PE-E1-I514-001 “Manejo del Bosque con Ganadería Integrada”, INTA, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Daniel Trinco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinco, F.D., Rusch, V.E., Howison, R.A. et al. Implications of landscape configuration on understory forage productivity: a remote sensing assessment of native forests openings. Agroforest Syst 95, 1675–1688 (2021). https://doi.org/10.1007/s10457-021-00676-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-021-00676-w

Keywords

Navigation