Skip to main content

Advertisement

Log in

Impact of crop-livestock-forest integration on soil quality

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Integrated agricultural production systems with trees, grain crops and forage species are important for land use optimization. However, they can result in non-uniform changes in physical and chemical soil properties. The objective of this work was to evaluate chemical and physical soil properties in a eucalyptus-based agroforestry system. The experiment was conducted in a Red–Yellow Argisol in Southeast Brazil. Eucalyptus (Eucalyptus grandis × E. camoldulensis) seedlings were planted in rows 12.0 m apart, and 2.0 m between plants. For 4 years the inter-row space was cropped to soybeans (Glycine max L. Merrill), Sunn hemp (Crotalaria juncea) and maize (Zea mays L.) in association with palisade grass (Urochloa brizantha). After that, the forage was grazed by beef cattle. Five years after the implementation of the experiment, chemical and physical soil analyses were performed along the profile. Non-uniform changes were observed in fertility and soil physics in the transect between the eucalyptus planting lines, both at the soil surface layers and in depth. Integrated crop/livestock production systems, where eucalyptus is intercropped with annual crops and forage grasses for grazing, results in lower soil fertility near tree lines and up to 100 cm deep over time. Next to the tree line there is an increase in soil compaction and reduced aggregate stability in the uppermost soil layer, while microporosity and soil structuring are increased in the soil deeper layers. These effects are probably due to animal trampling under the trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida FL, Calonego JC, Tiritan CS, Araújo FF, Silva PCG (2014) Produtividade de soja em diferentes posições entre renques de eucalipto em cultivo consorciado. Colloq Agrar 10:33–44. https://doi.org/10.5747/ca.2014.v10.n1.a098

    Article  Google Scholar 

  • Assis PCR, Stone L, Medeiros JC, Madari BE, Oliveira JM, Wruck FJ (2015) Atributos físicos do solo em sistemas de integração lavoura-pecuária-floresta. Revista Brasileira de Engenharia Agrícola e Ambiental 19:309–316. https://doi.org/10.1590/1807-1929/agriambi.v19n4p309-316

    Article  Google Scholar 

  • Balbino LC, Cordeiro LAM, Silva VP, Moraes A, Martínez GB, Alvarenga RC, Kichel AN, Fontaneli RS, Santos HP, Franchini JC, Galerani PR (2011) Evolução tecnológica e arranjos produtivos de sistemas de integração lavoura-pecuária-floresta no Brasil. Pesqui Agropecu Bras 46:10. https://doi.org/10.1590/S0100-204X2011001000001

    Article  Google Scholar 

  • Baliscei MA, Souza W, Barbosa OR, Cecato U, Krutzmann A, Queiroz EO (2012) Behavior of beef cattle and the microclimate with and without shade. Acta Sci Anim Sci 34:409–415. https://doi.org/10.4025/actascianimsci.v34i4.15055

    Article  Google Scholar 

  • Calonego JC, Rosolem CA (2010) Soybean root growth and yield in rotation with cover crops under chiseling and no-till. Eur J Agron 33:242–249. https://doi.org/10.1016/j.eja.2010.06.002

    Article  Google Scholar 

  • Castro GSA, Calonego JC, Crusciol CAC (2011) Propriedades físicas do solo em sistemas de rotação de culturas conforme o uso de corretivos da acidez. Pesqui Agropecu Bras 46:1690–1698

    Article  Google Scholar 

  • Cates JS (1912) The Mangum terrace in its relation to efficient farm management, vol 94. USDA, Washington, p 11p

    Google Scholar 

  • Danielson RE, Sutherland PL (1986) Porosity. In: Klute A (ed) Methods of soil analysis, physical and mineralogical methods (Part I). SSSA Book Series 5.1. Soil Science Society of America, Madison, pp 443–461

    Google Scholar 

  • Day PR (1965) Particle fractionation and particle-size analysis. In: Blake CA, Evans DD, White JL, Ensminger LE, Clark FE (eds) Methods of soil analysis (Part I). American Society of Agronomy, Madison, pp 545–567

    Google Scholar 

  • Dias-Filho MB (2000) Growth and biomass allocation of the C4 grasses Brachiaria brizantha and B. humidicola under shade. Pesqui Agropecu Bras 35:2335–2341. https://doi.org/10.1590/S0100-204X2000001200003

    Article  Google Scholar 

  • Dias-Filho MB (2011) Os desafios da produção animal em pastagens na fronteira agrícola brasileira. Revista Brasileira de Zootecnia 40:243–252

    Google Scholar 

  • Fabião AMD, Madeira M, Steen E (1987) Root mass in plantations of Eucalyptus globulus in Portugal in relation to soil characteristics. Arid Soil Res Rehabil 1:185–194. https://doi.org/10.1080/15324988709381143

    Article  Google Scholar 

  • Fonseca GC, Carneiro MAC, Costa AR, Oliveira GC, Balbino LC (2007) Atributos físicos, químicos e biológicos de Latossolo Vermelho distrófico de Cerrado sob duas rotações de cultura. Pesquisa Agropecuária Tropical 37:22–30

    Google Scholar 

  • Franzluebbers AJ (2007) Integrated crop–livestock systems in the southeastern USA. Agron J 99:361–372. https://doi.org/10.2134/agronj2006.0076

    Article  Google Scholar 

  • Franzluebbers AJ, Stuedemann JA (2014) Crop and cattle production responses to tillage and cover crop management in an integrated crop–livestock system in the southeastern USA. Eur J Agron 57:62–70. https://doi.org/10.1016/j.eja.2013.05.009

    Article  Google Scholar 

  • Franzluebbers AJ, Chappell JC, Shi W, Cubbage FW (2017) Greenhouse gas emissions in an agroforestry system of the southeastern USA. Nutr Cycl Agroecosyst 108:85–100. https://doi.org/10.1007/s10705-016-9809-7

    Article  CAS  Google Scholar 

  • Guenni O, Seiter S, Figueroa R (2008) Growth responses of three Brachiaria species to light intensity and nitrogen supply. Tropical Grasslands 42:75–87

    Google Scholar 

  • Kemper WD, Chepil WS (1965) Size distribution of aggregates. In: Blake CA, Evans DD, White JL, Ensminger LE, Clark FE (eds) Methods of soil analysis: physical and mineralogical properties, including statistics of measurement and sampling. American Society of Agronomy, Madison, pp 499–510

    Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. J Plant Nutr Soil Sci 163: 421-431. https://doi.org/10.1002/1522-2624(200008)163:4%3c421::AID-JPLN421%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Laclau JP, Arnaud M, Bouillet JP, Ranger J (2001) Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients. Tree Physiol 21:129–136

    Article  CAS  Google Scholar 

  • Lanzanova ME, Nicoloso RS, Lovato T, Eltz FLF, Amado TJC, Reinert DJR (2007) Atributos físicos do solo em sistema de integração lavoura-pecuária sob plantio direto. Revista Brasileira de Ciência do Solo 31:1131–1140. https://doi.org/10.1590/S0100-06832007000500028

    Article  Google Scholar 

  • Leite FP, Barros NF, Novais RF, Sans LMA, Fabres AS (1999) Relações hídricas em povoamento de eucalipto com diferentes densidades populacionais. Revista Brasileira de Ciência do Solo 23:9–16. https://doi.org/10.1590/S0100-06831999000100002

    Article  Google Scholar 

  • Lemaire G, Franzluebbers A, Carvalho PCF, Dedieu B (2014) Integrated crop–livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agric Ecosyst Environ 190:4–8. https://doi.org/10.1016/j.agee.2013.08.009

    Article  Google Scholar 

  • Loss A, Pereira MG, Giácomo SG, Perin A, Anjos LHC (2011) Agregação, carbono e nitrogênio em agregados do solo sob plantio direto com integração lavoura–pecuária. Pesqui Agropec Bras 46:1269–1276. https://doi.org/10.1590/S0100-204X2011001000022

    Article  Google Scholar 

  • Macedo MCM (2009) Integração lavoura e pecuária: o estado da arte e inovação tecnológicas. Revista Brasileira de Zootecnia 38:133–146

    Article  Google Scholar 

  • Madeira MV, Fabião A, Pereira JS, Araújo MC, Ribeiro C (2002) Changes in carbon stocks in Eucalyptus globulus Labill, plantations induced by different water and nutrient availability. For Ecol Manag 171:75–85. https://doi.org/10.1016/S0378-1127(02)00462-0

    Article  Google Scholar 

  • Marchão RL, Balbino LC, Silva EM, Santos Junior JDG, Sá MAC, Vilela L, Becquer T (2007) Qualidade física de um Latossolo Vermelho sob sistemas de integração lavoura-pecuária no Cerrado. Pesqui Agropecu Bras 42:873–882. https://doi.org/10.1590/S0100-204X2007000600015

    Article  Google Scholar 

  • Martins LFS, Poggiani F, Oliveira FR, Guedes MC, Gonçalves JLM (2004) Características do sistema radicular das árvores de Eucalyptus grandis em resposta à aplicação de doses crescentes de biossólido. Scientia Florestalis 65:207–218

    Google Scholar 

  • Myers RJK, Palm CA, Cuevas E, Gunatilleke IUN, Brossard M (1994) The synchronisation of nutrient mineralisation and plant nutrient demand. In: Woomer PL, Swift MJ (eds) The biological management of tropical soil fertility. Wiley-Sayce Publications, New York, pp 81–112

    Google Scholar 

  • Paciullo DSC, Castro CRT, Gomide CAM, Fernandes PB, Rocha WSD, Müller MD, Rossiello ROP (2010) Soil bulk density and biomass partitioning of Brachiaria decumbens in a silvopastoral system. Scientia Agricola 67:598–603

    Article  Google Scholar 

  • Paes Leme TM, Pires MFA, Verneque RSV, Alvim MJ, Aroeira LJM (2005) Behavior of holstein × zebu crossbreed cows grazing Brachiaria decumbens in a silvipastoral system. Ciência e Agrotecnologia 29:668–675. https://doi.org/10.1590/S1413-70542005000300023

    Article  Google Scholar 

  • Pulrolnik K, Barros NF, Silva IR, Novais RF, Brandani CB (2009) Estoques de carbono e nitrogênio em frações lábeis e estáveis da matéria orgânica de solos sob eucalipto, pastagem e cerrado no Vale do Jequitinhonha - MG. Revista Brasileira de Ciência do Solo 33:1125–1136. https://doi.org/10.1590/S0100-06832009000500006

    Article  CAS  Google Scholar 

  • Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade do solo. Instituto Agronômico, Campinas

    Google Scholar 

  • Santana RC, Barros NF, Novais RF, Leite HG, Comerford NB (2008) Alocação de nutrientes em plantios de eucalipto no Brasil. Revista Brasileira de Ciência do Solo 32:2723–2733. https://doi.org/10.1590/S0100-06832008000700016

    Article  CAS  Google Scholar 

  • Schiavo JA, Colodro G (2012) Agregação e resistência à penetração de um Latossolo Vermelho sob sistema de integração lavoura-pecuária. Bragantia 71:406–412. https://doi.org/10.1590/S0006-87052012005000035

    Article  Google Scholar 

  • Silva FAS, Azevedo CAV (2016) The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr J Agric Res 11:3733–3740. https://doi.org/10.5897/ajar2016.11522

    Article  Google Scholar 

  • Souza W, Barbosa OR, Marques JA, Costa MA, Gasparino E, Limberger E (2010) Microclimate in silvipastoral systems with eucalyptus in rank with different heights. Revista Brasileira de Zootecnia 39:685–694. https://doi.org/10.1590/S1516-35982010000300030

    Article  Google Scholar 

  • USDA Natural Resources Conservation Service (2010). National Soil Survey Center, Lincoln, NE. Soil survey staff. Keys to soil taxonomy, 11th ed. USDA Natural Resources Conservation Service

  • Witschoreck R, Schumacher MV, Caldeira MVW (2003) Estimativa da biomassa e do comprimento de raízes finas em Eucalyptus urophylla S.T. Blake no município de Santa Maria-RS. Revista Árvore 27:177–183. https://doi.org/10.1590/S0100-67622003000200008

    Article  Google Scholar 

  • Yoder RE (1936) A direct method of aggregate analysis of soil and a study of the physical nature of erosion losses. J Am Soc Agron 28:337–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the São Paulo Research foundation (FAPESP, Grant # 2013/08664-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro A. Rosolem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, W.L.B., Calonego, J.C. & Rosolem, C.A. Impact of crop-livestock-forest integration on soil quality. Agroforest Syst 93, 2111–2119 (2019). https://doi.org/10.1007/s10457-018-0329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-0329-0

Keywords

Navigation