Skip to main content

Advertisement

Log in

Multimodality imaging reveals angiogenic evolution in vivo during calvarial bone defect healing

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The healing of calvarial bone defects is a pressing clinical problem that involves the dynamic interplay between angiogenesis and osteogenesis within the osteogenic niche. Although structural and functional vascular remodeling (i.e., angiogenic evolution) in the osteogenic niche is a crucial modulator of oxygenation, inflammatory and bone precursor cells, most clinical and pre-clinical investigations have been limited to characterizing structural changes in the vasculature and bone. Therefore, we developed a new multimodality imaging approach that for the first time enabled the longitudinal (i.e., over four weeks) and dynamic characterization of multiple in vivo functional parameters in the remodeled vasculature and its effects on de novo osteogenesis, in a preclinical calvarial defect model. We employed multi-wavelength intrinsic optical signal (IOS) imaging to assess microvascular remodeling, intravascular oxygenation (SO2), and osteogenesis; laser speckle contrast (LSC) imaging to assess concomitant changes in blood flow and vascular maturity; and micro-computed tomography (μCT) to validate volumetric changes in calvarial bone. We found that angiogenic evolution was tightly coupled with calvarial bone regeneration and corresponded to distinct phases of bone healing, such as injury, hematoma formation, revascularization, and remodeling. The first three phases occurred during the initial two weeks of bone healing and were characterized by significant in vivo changes in vascular morphology, blood flow, oxygenation, and maturity. Overall, angiogenic evolution preceded osteogenesis, which only plateaued toward the end of bone healing (i.e., four weeks). Collectively, these data indicate the crucial role of angiogenic evolution in osteogenesis. We believe that such multimodality imaging approaches have the potential to inform the design of more efficacious tissue-engineering calvarial defect treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ren Y, Senarathna J, Grayson WL, Pathak AP (2022) State-of-the-art techniques for imaging the vascular microenvironment in craniofacial bone tissue engineering applications. Am J Physiol Cell Physiol 323(5):C1524–C1538. https://doi.org/10.1152/ajpcell.00195.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grosso A, Burger MG, Lunger A, Schaefer DJ, Banfi A, Di Maggio N (2017) It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol 5:68. https://doi.org/10.3389/fbioe.2017.00068

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murphy MP, Quarto N, Longaker MT, Wan DC (2017) (*) Calvarial defects: cell-based reconstructive strategies in the murine model. Tissue Eng Part C Methods 23(12):971–981. https://doi.org/10.1089/ten.TEC.2017.0230

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zuk PA (2008) Tissue engineering craniofacial defects with adult stem cells? Are we ready yet? Pediatr Res 63(5):478–486. https://doi.org/10.1203/PDR.0b013e31816bdf36

    Article  PubMed  Google Scholar 

  5. Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42(6):556–561. https://doi.org/10.1016/j.injury.2011.03.035

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matusin DP, Fontes-Pereira AJ, Rosa P, Barboza T, de Souza SAL, von Kruger MA, Pereira WCA (2018) Exploring cortical bone density through the ultrasound integrated reflection coefficient. Acta Ortop Bras 26(4):255–259. https://doi.org/10.1590/1413-785220182604177202

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhai Y, Schilling K, Wang T, El Khatib M, Vinogradov S, Brown EB, Zhang X (2021) Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 276:121041. https://doi.org/10.1016/j.biomaterials.2021.121041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hillman EM (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12(5):051402. https://doi.org/10.1117/1.2789693

    Article  PubMed  Google Scholar 

  9. Senarathna J, Rege A, Li N, Thakor NV (2013) Laser Speckle Contrast Imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110. https://doi.org/10.1109/RBME.2013.2243140

    Article  PubMed  Google Scholar 

  10. Bhargava A, Monteagudo B, Kushwaha P, Senarathna J, Ren Y, Riddle RC, Aggarwal M, Pathak AP (2022) VascuViz: a multimodality and multiscale imaging and visualization pipeline for vascular systems biology. Nat Methods 19(2):242–254. https://doi.org/10.1038/s41592-021-01363-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  12. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41. https://doi.org/10.1109/83.650848

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Ren Y, Senarathna J, Chu X, Grayson WL, Pathak AP (2022) Vascular-centric mapping of in vivo blood oxygen saturation in preclinical models. SSRN. https://doi.org/10.2139/ssrn.4251020

    Article  Google Scholar 

  14. Mendez A, Rindone AN, Batra N, Abbasnia P, Senarathna J, Gil S, Hadjiabadi D, Grayson WL, Pathak AP (2018) Phenotyping the microvasculature in critical-sized calvarial defects via multimodal optical imaging. Tissue Eng Part C Methods 24(7):430–440. https://doi.org/10.1089/ten.TEC.2018.0090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12):1226–1232. https://doi.org/10.1038/s41592-019-0582-9

    Article  CAS  PubMed  Google Scholar 

  16. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8(3):133–143. https://doi.org/10.1038/nrrheum.2012.1

    Article  CAS  PubMed  Google Scholar 

  17. Claes L, Maurer-Klein N, Henke T, Gerngross H, Melnyk M, Augat P (2006) Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J Orthop Res 24(6):1178–1185. https://doi.org/10.1002/jor.20173

    Article  PubMed  Google Scholar 

  18. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24(8):1347–1353. https://doi.org/10.1359/jbmr.090602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hendriks M, Ramasamy SK (2020) Blood vessels and vascular niches in bone development and physiological remodeling. Front Cell Dev Biol 8:602278. https://doi.org/10.3389/fcell.2020.602278

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peng Y, Wu S, Li Y, Crane JL (2020) Type H blood vessels in bone modeling and remodeling. Theranostics 10(1):426–436. https://doi.org/10.7150/thno.34126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328. https://doi.org/10.1038/nature13145

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. https://doi.org/10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  23. Holstein JH, Becker SC, Fiedler M, Garcia P, Histing T, Klein M, Laschke MW, Corsten M, Pohlemann T, Menger MD (2011) Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. Injury 42(8):765–771. https://doi.org/10.1016/j.injury.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  24. Huang C, Ness VP, Yang X, Chen H, Luo J, Brown EB, Zhang X (2015) Spatiotemporal analyses of osteogenesis and angiogenesis via intravital imaging in cranial bone defect repair. J Bone Miner Res 30(7):1217–1230. https://doi.org/10.1002/jbmr.2460

    Article  CAS  PubMed  Google Scholar 

  25. Grundnes O, Reikeras O (1992) Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. Acta Orthop Scand 63(5):487–491. https://doi.org/10.3109/17453679209154720

    Article  CAS  PubMed  Google Scholar 

  26. Tomlinson RE, Silva MJ (2013) Skeletal blood flow in bone repair and maintenance. Bone Res 1(4):311–322. https://doi.org/10.4248/BR201304002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trueta J (1974) Blood supply and the rate of healing of tibial fractures. Clin Orthop Relat Res 105:11–26

    Article  Google Scholar 

  28. Ramasamy SK, Kusumbe AP, Schiller M, Zeuschner D, Bixel MG, Milia C, Gamrekelashvili J, Limbourg A, Medvinsky A, Santoro MM, Limbourg FP, Adams RH (2016) Blood flow controls bone vascular function and osteogenesis. Nat Commun 7:13601. https://doi.org/10.1038/ncomms13601

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Lu C, Saless N, Wang X, Sinha A, Decker S, Kazakia G, Hou H, Williams B, Swartz HM, Hunt TK, Miclau T, Marcucio RS (2013) The role of oxygen during fracture healing. Bone 52(1):220–229. https://doi.org/10.1016/j.bone.2012.09.037

    Article  CAS  PubMed  Google Scholar 

  30. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196(1):2–8. https://doi.org/10.1002/jcp.10321

    Article  CAS  PubMed  Google Scholar 

  31. Schilling K, El Khatib M, Plunkett S, Xue J, Xia Y, Vinogradov SA, Brown E, Zhang X (2019) Electrospun fiber mesh for high-resolution measurements of oxygen tension in cranial bone defect repair. ACS Appl Mater Interfaces 11(37):33548–33558. https://doi.org/10.1021/acsami.9b08341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suvarnapathaki S, Wu X, Zhang T, Nguyen MA, Goulopoulos AA, Wu B, Camci-Unal G (2022) Oxygen generating scaffolds regenerate critical size bone defects. Bioact Mater 13:64–81. https://doi.org/10.1016/j.bioactmat.2021.11.002

    Article  CAS  PubMed  Google Scholar 

  33. Touri M, Moztarzadeh F, Abu Osman NA, Dehghan MM, Brouki Milan P, Farzad-Mohajeri S, Mozafari M (2020) Oxygen-releasing scaffolds for accelerated bone regeneration. ACS Biomater Sci Eng 6(5):2985–2994. https://doi.org/10.1021/acsbiomaterials.9b01789

    Article  CAS  PubMed  Google Scholar 

  34. Farris AL, Rindone AN, Grayson WL (2016) Oxygen delivering biomaterials for tissue engineering. J Mater Chem B 4(20):3422–3432. https://doi.org/10.1039/C5TB02635K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun H, Xu J, Wang Y, Shen S, Xu X, Zhang L, Jiang Q (2023) Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater 24:477–496. https://doi.org/10.1016/j.bioactmat.2022.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DiPietro LA (2016) Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 100(5):979–984. https://doi.org/10.1189/jlb.4MR0316-102R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashkanian M, Gjedde A, Mouridsen K, Vafaee M, Hansen KV, Ostergaard L, Andersen G (2009) Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain. Brain Res 1304:90–95. https://doi.org/10.1016/j.brainres.2009.09.076

    Article  CAS  PubMed  Google Scholar 

  38. Baudelet C, Cron GO, Gallez B (2006) Determination of the maturity and functionality of tumor vasculature by MRI: correlation between BOLD-MRI and DCE-MRI using P792 in experimental fibrosarcoma tumors. Magn Reson Med 56(5):1041–1049. https://doi.org/10.1002/mrm.21047

    Article  PubMed  Google Scholar 

  39. Kim E, Zhang J, Hong K, Benoit NE, Pathak AP (2011) Vascular phenotyping of brain tumors using magnetic resonance microscopy (muMRI). J Cereb Blood Flow Metab 31(7):1623–1636. https://doi.org/10.1038/jcbfm.2011.17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oyelade J, Isewon I, Oladipupo F, Aromolaran O, Uwoghiren E, Ameh F, Achas M, Adebiyi E (2016) Clustering algorithms: their application to gene expression data. Bioinform Biol Insights 10:237–253. https://doi.org/10.4137/BBI.S38316

    Article  PubMed  PubMed Central  Google Scholar 

  41. Otto E, Knapstein PR, Jahn D, Appelt J, Frosch KH, Tsitsilonis S, Keller J (2020) Crosstalk of brain and bone-clinical observations and their molecular bases. Int J Mol Sci. https://doi.org/10.3390/ijms21144946

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pfeiffenberger M, Damerau A, Lang A, Buttgereit F, Hoff P, Gaber T (2021) Fracture healing research-shift towards in vitro modeling? Biomedicines. https://doi.org/10.3390/biomedicines9070748

    Article  PubMed  PubMed Central  Google Scholar 

  43. Van der Ende J, Van Baardewijk LJ, Sier CF, Schipper IB (2013) Bone healing and mannose-binding lectin. Int J Surg 11(4):296–300. https://doi.org/10.1016/j.ijsu.2013.02.022

    Article  PubMed  Google Scholar 

  44. Han Z, Bhavsar M, Leppik L, Oliveira KMC, Barker JH (2018) Histological scoring method to assess bone healing in critical size bone defect models. Tissue Eng Part C Methods 24(5):272–279. https://doi.org/10.1089/ten.TEC.2017.0497

    Article  PubMed  Google Scholar 

  45. Zhang L, Zhang L, Lan X, Xu M, Mao Z, Lv H, Yao Q, Tang P (2014) Improvement in angiogenesis and osteogenesis with modified cannulated screws combined with VEGF/PLGA/fibrin glue in femoral neck fractures. J Mater Sci Mater Med 25(4):1165–1172. https://doi.org/10.1007/s10856-013-5138-4

    Article  CAS  PubMed  Google Scholar 

  46. Menger MM, Korbel C, Bauer D, Bleimehl M, Tobias AL, Braun BJ, Herath SC, Rollmann MF, Laschke MW, Menger MD, Histing T (2022) Photoacoustic imaging for the study of oxygen saturation and total hemoglobin in bone healing and non-union formation. Photoacoustics 28:100409. https://doi.org/10.1016/j.pacs.2022.100409

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Xi L (2021) Chronic cranial window for photoacoustic imaging: a mini review. Vis Comput Ind Biomed Art 4(1):15. https://doi.org/10.1186/s42492-021-00081-1

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  48. Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS (2019) Photoacoustic clinical imaging. Photoacoustics 14:77–98. https://doi.org/10.1016/j.pacs.2019.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rindone AN, Liu X, Farhat S, Perdomo-Pantoja A, Witham TF, Coutu DL, Wan M, Grayson WL (2021) Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nat Commun 12(1):6219. https://doi.org/10.1038/s41467-021-26455-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NCI grant nos. 2R01CA196701-06A1, 5R01CA237597-04 and 5R01DE027957-05.

Author information

Authors and Affiliations

Authors

Contributions

"YR, WG and APP designed the experiments. YR and APP wrote the main manuscript text and prepared figures. XC, JS, AB, WG assisted with imaging, data/image analyses and sample processing. All authors reviewed the manuscript."

Corresponding author

Correspondence to Arvind P. Pathak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10456_2023_9899_MOESM1_ESM.tiff

Supplementary file1 (TIFF 24677 KB) Supplementary Fig. 1: Developing and mature vessel phenotypes exhibited distinct blood flow and morphology. (a) Data from a representative animal in which developing vessels (blue) exhibited lower blood flow compared to mature vessels (yellow) through all the stages of calvarial bone healing. (b) Compared to developing vessels, mature vessels exhibited a widerrange of radii. (c) For the entire cohort, the mean blood flow of developing vessels was significantly lower (p<0.05) than that of mature vessels and (d) the mean radii of developing vessels was significantly smaller (p<0.05) than that of mature vessels, across the phases of angiogenic evolution

Supplementary file2 (TIFF 24677 KB)

Supplementary file3 (MOV 9905 KB) Supplementary Video 1: 3D visualization of the bone and blood vessels using the VascuViz protocol

Supplementary file4 (MOV 5727 KB) Supplementary Video 2: Time-lapse movie illustrating structural and functional changes in the vasculature (i.e. angiogenic evolution) in a representative mouse over the four week calvarial defect healing cycle

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Chu, X., Senarathna, J. et al. Multimodality imaging reveals angiogenic evolution in vivo during calvarial bone defect healing. Angiogenesis 27, 105–119 (2024). https://doi.org/10.1007/s10456-023-09899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-023-09899-0

Keywords

Navigation