Skip to main content

Advertisement

Log in

IQGAP1 causes choroidal neovascularization by sustaining VEGFR2-mediated Rac1 activation

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Loss of visual acuity in neovascular age-related macular degeneration (nAMD) occurs when factors activate choroidal endothelial cells (CECs) to transmigrate the retinal pigment epithelium into the sensory retina and develop into choroidal neovascularization (CNV). Active Rac1 (Rac1GTP) is required for CEC migration and is induced by different AMD-related stresses, including vascular endothelial growth factor (VEGF). Besides its role in pathologic events, Rac1 also plays a role in physiologic functions. Therefore, we were interested in a method to inhibit pathologic activation of Rac1. We addressed the hypothesis that IQGAP1, a scaffold protein with a Rac1 binding domain, regulates pathologic Rac1GTP in CEC migration and CNV. Compared to littermate Iqgap1+/+, Iqgap1−/− mice had reduced volumes of laser-induced CNV and decreased Rac1GTP and phosphorylated VEGFR2 (p-VEGFR2) within lectin-stained CNV. Knockdown of IQGAP1 in CECs significantly reduced VEGF-induced Rac1GTP, mediated through p-VEGFR2, which was necessary for CEC migration. Moreover, sustained activation of Rac1GTP induced by VEGF was eliminated when CECs were transfected with an IQGAP1 construct that is unable to bind Rac1. IQGAP1-mediated Src activation was involved in initiating Rac1 activation, CEC migration, and tube formation. Our findings indicate that CEC IQGAP1 interacts with VEGFR2 to mediate Src activation and subsequent Rac1 activation and CEC migration. In addition, IQGAP1 binding to Rac1GTP results in sustained activation of Rac1, leading to CEC migration toward VEGF. Our study supports a role of IQGAP1 and the interaction between IQGAP1 and Rac1GTP to restore CECs quiescence and, therefore, prevent vision-threatening CNV in nAMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614

    PubMed  Google Scholar 

  2. Hartnett ME, Elsner AE (1996) Characteristics of exudative age-related macular degeneration determined in vivo with confocal and indirect infrared imaging. Ophthalmology 103(1):58–71

    CAS  PubMed  Google Scholar 

  3. Spaide RF, Jaffe GJ, Sarraf D et al (2020) Consensus nomenclature for reporting neovascular age-related macular degeneration data. Ophthalmology 127:616–636

    PubMed  Google Scholar 

  4. Hartnett ME, Elsner AE (1996) Characteristics of exudative age-related macular degeneration determined in vivo with confocal and indirect infrared imaging. Ophthalmology 103:58–71

    CAS  PubMed  Google Scholar 

  5. Daniel E et al (2019) Five-year follow-up of nonfibrotic scars in the comparison of age-related macular degeneration treatments trials. Ophthalmology 126(5):743–751

    PubMed  Google Scholar 

  6. Pershing S et al (2019) Use of bevacizumab and ranibizumab for wet age-related macular degeneration: influence of CATT results and introduction of aflibercept. Am J Ophthalmol 207:385–394

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaffe GJ et al (2019) Macular morphology and visual acuity in year five of the comparison of age-related macular degeneration treatments trials. Ophthalmology 126(2):252–260

    PubMed  Google Scholar 

  8. Engers R et al (2001) Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem 276(45):41889–41897

    CAS  PubMed  Google Scholar 

  9. Ridley AJ et al (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    CAS  PubMed  Google Scholar 

  10. Burridge K (1999) Crosstalk between Rac and Rho. Science 283:2028–2029

    CAS  PubMed  Google Scholar 

  11. Peterson LJ et al (2006) Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1. Exp Eye Res 84:737

  12. Peterson LJ et al (2006) Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1. Exp Eye Res 84:737

    PubMed  PubMed Central  Google Scholar 

  13. Wang H et al (2016) TNF-alpha mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent beta-catenin activation. Mol Vis 22:116–128

    PubMed  PubMed Central  Google Scholar 

  14. Monaghan-Benson E, Burridge K (2009) The regulation of VEGF-induced microvascular permeability requires Rac and ROS. J Biol Chem 284:25604

  15. Wittchen ES et al (2005) Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function. J Biol Chem 280:11675–11682

    CAS  PubMed  Google Scholar 

  16. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116(2):167–179

    CAS  PubMed  Google Scholar 

  17. Panday A et al (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12(1):5–23

    CAS  PubMed  Google Scholar 

  18. Acevedo A, Gonzalez-Billault C (2018) Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 116:101–113

    CAS  PubMed  Google Scholar 

  19. Bid HK et al (2013) RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 12(10):1925–1934

    CAS  PubMed  Google Scholar 

  20. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    CAS  PubMed  Google Scholar 

  21. Hedman AC, Smith JM, Sacks DB (2015) The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 16(4):427–446

    CAS  PubMed  PubMed Central  Google Scholar 

  22. White CD, Erdemir HH, Sacks DB (2012) IQGAP1 and its binding proteins control diverse biological functions. Cell Signal 24(4):826–834

    CAS  PubMed  Google Scholar 

  23. Mataraza JM et al (2003) IQGAP1 promotes cell motility and invasion. J Biol Chem 278(42):41237–41245

    CAS  PubMed  Google Scholar 

  24. Mataraza JM et al (2007) Multiple proteins mediate IQGAP1-stimulated cell migration. Cell Signal 19(9):1857–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jadeski L et al (2008) IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast epithelial cells. J Biol Chem 283(2):1008–1017

    CAS  PubMed  Google Scholar 

  26. Balenci L et al (2007) IQGAP1 regulates adult neural progenitors in vivo and vascular endothelial growth factor-triggered neural progenitor migration in vitro. J Neurosci 27(17):4716–4724

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang H et al (2015) Rap1 GTPase Inhibits Tumor Necrosis Factor-alpha-Induced Choroidal Endothelial Migration via NADPH Oxidase- and NF-kappaB-Dependent Activation of Rac1. Am J Pathol 185(12):3316–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Geisen P, McColm JR, Hartnett ME (2006) Choroidal endothelial cells transmigrate across the retinal pigment epithelium but do not proliferate in response to soluble vascular endothelial growth factor. Exp Eye Res 82:608–619

    CAS  PubMed  Google Scholar 

  29. Mataraza JM et al (2003) Identification and characterization of the Cdc42-binding site of IQGAP1. Biochem Biophys Res Commun 305(2):315–321

    CAS  PubMed  Google Scholar 

  30. Sullivan DP et al (2019) Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis. The Journal of experimental medicine 216(11):2582–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamaoka-Tojo M et al (2006) IQGAP1 mediates VE-cadherin-based cell-cell contacts and vegf signaling at adherence junctions linked to angiogenesis. Arterioscl Thromb Vasc Biol 26(9):1991–1997

    CAS  PubMed  Google Scholar 

  32. Meyer RD, Sacks DB, Rahimi N (2008) IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS ONE 3(12):e3848

    PubMed  PubMed Central  Google Scholar 

  33. Huang H, Shen J, Vinores SA (2011) Blockade of VEGFR1 and 2 suppresses pathological angiogenesis and vascular leakage in the eye. PLoS ONE 6(6):e21411

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cruz-Gonzalez F et al (2014) Predictive value of VEGF A and VEGFR2 polymorphisms in the response to intravitreal ranibizumab treatment for wet AMD. Graefes Arch Clin Exp Ophthalmol 252(3):469–475

    CAS  PubMed  Google Scholar 

  35. Askou AL et al (2019) Suppression of Choroidal Neovascularization by AAV-Based Dual-Acting Antiangiogenic Gene Therapy. Molecular therapy. Nucleic acids 16:38–50

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lukason M et al (2011) Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. Mol Ther 19(2):260–265

    CAS  PubMed  Google Scholar 

  37. Martin DF (2018) Evolution of intravitreal therapy for retinal diseases: from CMV to CNV: the LXXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2017.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  38. Owen D et al (2008) The IQGAP1-Rac1 and IQGAP1-Cdc42 interactions: interfaces differ between the complexes. J Biol Chem 283(3):1692–1704

    CAS  PubMed  Google Scholar 

  39. Wang H et al (2011) The Role of RPE Cell-Associated VEGF189 in Choroidal Endothelial Cell Transmigration across the RPE. Invest Ophthalmol Vis Sci 52(1):570–578

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mezquita B et al (2014) Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity. Cells 3(1):92–111

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Z et al (2018) Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue-engineered constructs via activating CXCR2-Src-PKL/Vav2-Rac1. Faseb j 32(4):2197–2211

    CAS  PubMed  Google Scholar 

  42. Joussen AM, Bornfeld N (2009) The treatment of wet age-related macular degeneration. Dtsch Arztebl Int 106(18):312–317

    PubMed  PubMed Central  Google Scholar 

  43. Haller JA (2013) Current anti-vascular endothelial growth factor dosing regimens: benefits and burden. Ophthalmology 120(5 Suppl):S3–S7

    PubMed  Google Scholar 

  44. Rofagha S et al (2013) Seven-Year Outcomes in Ranibizumab-Treated Patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. https://doi.org/10.1016/j.ophtha.2013.03.046

    Article  PubMed  Google Scholar 

  45. Wang H, Hartnett ME (2016) Regulation of signaling events involved in the pathophysiology of neovascular AMD. Mol Vis 22:189–202

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Handa JT et al (2019) A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun 10(1):3347

    PubMed  PubMed Central  Google Scholar 

  47. Farecki ML et al (2017) Characteristics of type 1 and 2 CNV in exudative AMD in OCT-angiography. Graefes Arch Clin Exp Ophthalmol 255(5):913–921

    PubMed  Google Scholar 

  48. Grunwald JE et al (2012) Photographic assessment of baseline fundus morphologic features in the comparison of age-related macular degeneration treatments trials. Ophthalmology 119(8):1634–1641

    PubMed  Google Scholar 

  49. Monaghan-Benson E et al (2010) The role of vascular endothelial growth factor-induced activation of NADPH oxidase in choroidal endothelial cells and choroidal neovascularization. Am J Pathol 177(4):2091–2102

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang H et al (2016) Retinal inhibition of CCR3 induces retinal cell death in a murine model of choroidal neovascularization. PLoS ONE 11(6):e0157748

    PubMed  PubMed Central  Google Scholar 

  51. Takeda A et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460(7252):225–230

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang H et al (2011) Upregulation of CCR3 by age-related stresses promotes choroidal endothelial cell migration via VEGF-dependent and -independent signaling. Investig Ophthalmol Vis Sci 52(11):8271–8277

    CAS  Google Scholar 

  53. Churchill AJ et al (2006) VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum Mol Genet 15(19):2955–2961

    CAS  PubMed  Google Scholar 

  54. Urao N et al (2008) Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res 103(2):212–220

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Becker S et al (2008) Targeted Knockdown of Overexpressed VEGFA or VEGF164 in Muller cells maintains retinal function by triggering different signaling mechanisms. Sci Rep 8(1):2003

    PubMed  PubMed Central  Google Scholar 

  56. Saint-Geniez M et al (2008) Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS ONE 3(11):e3554

    PubMed  PubMed Central  Google Scholar 

  57. D’Amore PA, Smith SR (1993) Growth factor effects on cells of the vascular wall: a survey. Growth Factors 8(1):61–75

    PubMed  Google Scholar 

  58. Abe K et al (2000) Vav2 Is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 275(14):10141–10149

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health EY014800 and an Unrestricted Grant from Research to Prevent Blindness, Inc., New York, NY, to the Department of Ophthalmology & Visual Sciences, University of Utah; and the National Institutes of Health R01EY015130 and R01EY017011 to M.E.H and by T32 EY024234 to A. R. D.B.S. is supported by the Intramural Research Program of the National Institutes of Health. We thank Dr. William A. Muller for providing adenovirus-IQGAP1shRNA constructs.

Author information

Authors and Affiliations

Authors

Contributions

HW designed and performed the experiments and wrote the manuscript; AR and EK performed experiments and housed the animals; DBS provided the animals, reagents, and wrote the manuscript; MEH designed the experiments, wrote the manuscript, and provided funding supports.

Corresponding author

Correspondence to M. Elizabeth Hartnett.

Ethics declarations

Conflict of interest

The authors declared there were no conflicts of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ramshekar, A., Kunz, E. et al. IQGAP1 causes choroidal neovascularization by sustaining VEGFR2-mediated Rac1 activation. Angiogenesis 23, 685–698 (2020). https://doi.org/10.1007/s10456-020-09740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09740-y

Keywords

Navigation