Skip to main content

Advertisement

Log in

B-cell non-Hodgkin lymphoma: importance of angiogenesis and antiangiogenic therapy

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis is critical for the initiation and progression of solid tumors, as well as hematological malignancies. While angiogenesis in solid tumors has been well characterized, a large body of investigation is devoted to clarify the impact of angiogenesis on lymphoma development. B-cell non-Hodgkin lymphoma (B-NHL) is the most common lymphoid malignancy with a highly heterogeneity. The malignancy remains incurable despite that the addition of rituximab to conventional chemotherapies provides substantial improvements. Several angiogenesis-related parameters, such as proangiogenic factors, circulating endothelial cells, microvessel density, and tumor microenvironment, have been identified as prognostic indicators in different types of B-NHL. A better understanding of how these factors work together to facilitate lymphoma-specific angiogenesis will help to design better antiangiogenic strategies. So far, VEGF-A monoclonal antibodies, receptor tyrosine kinase inhibitors targeting VEGF receptors, and immunomodulatory drugs with antiangiogenic activities are being tested in preclinical and clinical studies. This review summarizes recent advances in the understanding of the role of angiogenesis in B-NHL, and discusses the applications of antiangiogenic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    CAS  PubMed  Google Scholar 

  2. Koster A, Raemaekers JM (2005) Angiogenesis in malignant lymphoma. Curr Opin Oncol 17(6):611–616

    PubMed  Google Scholar 

  3. Ruan J, Hajjar K, Rafii S, Leonard JP (2009) Angiogenesis and antiangiogenic therapy in non-Hodgkin’s lymphoma. Ann Oncol 20(3):413–424

    CAS  PubMed  Google Scholar 

  4. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M et al (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215

    CAS  PubMed  Google Scholar 

  5. Gratzinger D, Zhao S, Marinelli RJ, Kapp AV, Tibshirani RJ, Hammer AS et al (2007) Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes. Am J Pathol 170(4):1362–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M et al (2000) In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 96(9):3181–3187

    CAS  PubMed  Google Scholar 

  7. Bairey O, Boycov O, Kaganovsky E, Zimra Y, Shaklai M, Rabizadeh E (2004) All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leuk Res 28(3):243–248

    CAS  PubMed  Google Scholar 

  8. Ganjoo KN, Moore AM, Orazi A, Sen JA, Johnson CS, An CS (2008) The importance of angiogenesis markers in the outcome of patients with diffuse large B cell lymphoma: a retrospective study of 97 patients. J Cancer Res Clin Oncol 134(3):381–387

    CAS  PubMed  Google Scholar 

  9. Gratzinger D, Zhao S, Tibshirani RJ, Hsi ED, Hans CP, Pohlman B et al (2008) Prognostic significance of VEGF, VEGF receptors, and microvessel density in diffuse large B cell lymphoma treated with anthracycline-based chemotherapy. Lab Invest 88(1):38–47

    CAS  PubMed  Google Scholar 

  10. Gratzinger D, Advani R, Zhao S, Talreja N, Tibshirani RJ, Shyam R et al (2010) Lymphoma cell VEGFR2 expression detected by immunohistochemistry predicts poor overall survival in diffuse large B cell lymphoma treated with immunochemotherapy (R-CHOP). Br J Haematol 148(2):235–244

    CAS  PubMed  Google Scholar 

  11. Jorgensen JM, Sorensen FB, Bendix K, Nielsen JL, Funder A, Karkkainen MJ et al (2009) Expression level, tissue distribution pattern, and prognostic impact of vascular endothelial growth factors VEGF and VEGF-C and their receptors Flt-1, KDR, and Flt-4 in different subtypes of non-Hodgkin lymphomas. Leuk Lymphoma 50(10):1647–1660

    PubMed  Google Scholar 

  12. Ferrajoli A, Manshouri T, Estrov Z, Keating MJ, O’Brien S, Lerner S et al (2001) High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin Cancer Res 7(4):795–799

    CAS  PubMed  Google Scholar 

  13. Riihijarvi S, Nurmi H, Holte H, Bjorkholm M, Fluge O, Pedersen LM et al (2012) High serum vascular endothelial growth factor level is an adverse prognostic factor for high-risk diffuse large B-cell lymphoma patients treated with dose-dense chemoimmunotherapy. Eur J Haematol 89(5):395–402

    CAS  PubMed  Google Scholar 

  14. Niitsu N, Okamato M, Nakamine H, Yoshino T, Tamaru J, Nakamura S et al (2002) Simultaneous elevation of the serum concentrations of vascular endothelial growth factor and interleukin-6 as independent predictors of prognosis in aggressive non-Hodgkin’s lymphoma. Eur J Haematol 68(2):91–100

    CAS  PubMed  Google Scholar 

  15. Salven P, Orpana A, Teerenhovi L, Joensuu H (2000) Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 96(12):3712–3718

    CAS  PubMed  Google Scholar 

  16. Rueda A, Rifa J, Quero C, Gomez-Codina J, Murias A, Garcia-Arroyo FR et al (2014) High serum levels of vascular endothelial growth factor-C have a positive impact on outcome of patients with advanced diffuse large B cell lymphoma. Leuk Lymphoma 55(6):1413–1416

    PubMed  Google Scholar 

  17. Labidi SI, Menetrier-Caux C, Chabaud S, Chassagne C, Sebban C, Gargi T et al (2010) Serum cytokines in follicular lymphoma. Correlation of TGF-beta and VEGF with survival. Ann Hematol 89(1):25–33

    CAS  PubMed  Google Scholar 

  18. Molica S, Vitelli G, Levato D, Ricciotti A, Digiesi G (2002) Clinicoprognostic implications of increased serum levels of vascular endothelial growth factor and basic fibroblastic growth factor in early B-cell chronic lymphocytic leukaemia. Br J Cancer 86(1):31–35

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Monestiroli S, Mancuso P, Burlini A, Pruneri G, Dell’Agnola C, Gobbi A et al (2001) Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 61(11):4341–4344

    CAS  PubMed  Google Scholar 

  20. Mancuso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, Bertolini F (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97(11):3658–3661

    CAS  PubMed  Google Scholar 

  21. Igreja C, Courinha M, Cachaco AS, Pereira T, Cabecadas J, da Silva MG et al (2007) Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica 92(4):469–477

    PubMed  Google Scholar 

  22. Alshenawy HA (2010) Prognostic significance of vascular endothelial growth factor, basic fibroblastic growth factor, and microvessel density and their relation to cell proliferation in B-cell non-Hodgkin’s lymphoma. Ann Diagn Pathol 14(5):321–327

    PubMed  Google Scholar 

  23. Cardesa-Salzmann TM, Colomo L, Gutierrez G, Chan WC, Weisenburger D, Climent F et al (2011) High microvessel density determines a poor outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus chemotherapy. Haematologica 96(7):996–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Taskinen M, Jantunen E, Kosma VM, Bono P, Karjalainen-Lindsberg ML, Leppa S (2010) Prognostic impact of CD31-positive microvessel density in follicular lymphoma patients treated with immunochemotherapy. Eur J Cancer 46(13):2506–2512

    PubMed  Google Scholar 

  25. Vesela P, Tonar Z, Salek D, Vokurka S, Trneny M, Kodet R et al (2014) Microvessel density of mantle cell lymphoma. A retrospective study of its prognostic role and the correlation with the Ki-67 and the mantle cell lymphoma international prognostic index in 177 cases. Virchows Arch 465(5):587–597

    CAS  PubMed  Google Scholar 

  26. Koster A, van Krieken JH, Mackenzie MA, Schraders M, Borm GF, van der Laak JA et al (2005) Increased vascularization predicts favorable outcome in follicular lymphoma. Clin Cancer Res 11(1):154–161

    CAS  PubMed  Google Scholar 

  27. Crivellato E, Nico B, Vacca A, Dammacco F, Rebatti D (2002) Mast cell heterogeneity in B-cell non-Hodgkin’s lymphomas: an ultrastructural study. Leuk Lymphoma 43(11):2201–2205

    PubMed  Google Scholar 

  28. Duse AO, Ceausu RA, Mezei T, Cimpean AM, Gaje P, Ionita H et al (2011) Mast cells contribute to the angiogenesis in non-Hodgkin lymphoma. An immunohistochemical study based on the relationship with microvessel density. Rom J Morphol Embryol 52(3 Suppl):1091–1096

    PubMed  Google Scholar 

  29. Hedstrom G, Berglund M, Molin D, Fischer M, Nilsson G, Thunberg U et al (2007) Mast cell infiltration is a favourable prognostic factor in diffuse large B-cell lymphoma. Br J Haematol 138(1):68–71

    PubMed  Google Scholar 

  30. Taskinen M, Karjalainen-Lindsberg ML, Leppa S (2008) Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood 111(9):4664–4667

    CAS  PubMed  Google Scholar 

  31. Nam SJ, Go H, Paik JH, Kim TM, Heo DS, Kim CW et al (2014) An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk Lymphoma 55(11):2466–2476

    CAS  PubMed  Google Scholar 

  32. Riihijarvi S, Fiskvik I, Taskinen M, Vajavaara H, Tikkala M, Yri O et al (2015) Prognostic influence of macrophages in patients with diffuse large B-cell lymphoma: a correlative study from a Nordic phase II trial. Haematologica 100(2):238–245

    PubMed  PubMed Central  Google Scholar 

  33. Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F et al (2008) High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol 26(3):440–446

    CAS  PubMed  Google Scholar 

  34. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G et al (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108(9):2957–2964

    CAS  PubMed  Google Scholar 

  35. Lee NR, Song EK, Jang KY, Choi HN, Moon WS, Kwon K et al (2008) Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis. Leuk Lymphoma 49(2):247–256

    CAS  PubMed  Google Scholar 

  36. Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD (2010) The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 115(2):289–295

    CAS  PubMed  Google Scholar 

  37. Wahlin BE, Sander B, Christensson B, Kimby E (2007) CD8 + T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res 13(2 Pt 1):388–397

    CAS  PubMed  Google Scholar 

  38. Alvaro T, Lejeune M, Salvado MT, Lopez C, Jaen J, Bosch R et al (2006) Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol 24(34):5350–5357

    PubMed  Google Scholar 

  39. Carreras J, Lopez-Guillermo A, Roncador G, Villamor N, Colomo L, Martinez A et al (2009) High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol 27(9):1470–1476

    PubMed  Google Scholar 

  40. Wang ES, Teruya-Feldstein J, Wu Y, Zhu Z, Hicklin DJ, Moore MA (2004) Targeting autocrine and paracrine VEGF receptor pathways inhibits human lymphoma xenografts in vivo. Blood 104(9):2893–2902

    CAS  PubMed  Google Scholar 

  41. Goto H, Kudo E, Kariya R, Taura M, Katano H, Okada S (2015) Targeting VEGF and interleukin-6 for controlling malignant effusion of primary effusion lymphoma. J Cancer Res Clin Oncol 141(3):465–474

    CAS  PubMed  Google Scholar 

  42. Mori F, Ishida T, Ito A, Sato F, Masaki A, Takino H et al (2012) Potent antitumor effects of bevacizumab in a microenvironment-dependent human lymphoma mouse model. Blood Cancer J 2(4):e67

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stopeck AT, Unger JM, Rimsza LM, Bellamy WT, Iannone M, Persky DO et al (2009) A phase II trial of single agent bevacizumab in patients with relapsed, aggressive non-Hodgkin lymphoma: Southwest oncology group study S0108. Leuk Lymphoma 50(5):728–735

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruan J, Gregory SA, Christos P, Martin P, Furman RR, Coleman M et al (2014) Long-term follow-up of R-CHOP with bevacizumab as initial therapy for mantle cell lymphoma: clinical and correlative results. Clin Lymphoma Myeloma Leuk 14(2):107–113

    PubMed  Google Scholar 

  45. Stopeck AT, Unger JM, Rimsza LM, LeBlanc M, Farnsworth B, Iannone M et al (2012) A phase 2 trial of standard-dose cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP) and rituximab plus bevacizumab for patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: SWOG 0515. Blood 120(6):1210–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fu Z, Zhu J, Zheng W, Liu W, Ying Z, Xie Y et al (2014) Safety and efficacy of bevacizumab combined with R-CHOP regimen in seven Chinese patients with untreated diffuse large B-cell lymphoma. Cancer Cell Int 14(1):5

    PubMed  PubMed Central  Google Scholar 

  47. Hainsworth JD, Greco FA, Raefsky EL, Thompson DS, Lunin S, Reeves J Jr et al (2014) Rituximab with or without bevacizumab for the treatment of patients with relapsed follicular lymphoma. Clin Lymphoma Myeloma Leuk 14(4):277–283

    PubMed  Google Scholar 

  48. Lockhart AC, Rothenberg ML, Dupont J, Cooper W, Chevalier P, Sternas L et al (2010) Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol 28(2):207–214

    CAS  PubMed  Google Scholar 

  49. Romero M, Briere J, de Bazelaire C, Leboeuf C, Wang L, Ratajczak P et al (2011) Aflibercept-mediated early angiogenic changes in aggressive B-cell lymphoma. Cancer Chemother Pharmacol 68(5):1135–1143

    CAS  PubMed  Google Scholar 

  50. Carlo-Stella C, Locatelli SL, Giacomini A, Cleris L, Saba E, Righi M et al (2013) Sorafenib inhibits lymphoma xenografts by targeting MAPK/ERK and AKT pathways in tumor and vascular cells. PLoS One 8(4):e61603

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chapuy B, Schuelper N, Panse M, Dohm A, Hand E, Schroers R et al (2011) Multikinase inhibitor sorafenib exerts cytocidal efficacy against Non-Hodgkin lymphomas associated with inhibition of MAPK14 and AKT phosphorylation. Br J Haematol 152(4):401–412

    CAS  PubMed  Google Scholar 

  52. Xargay-Torrent S, Lopez-Guerra M, Montraveta A, Saborit-Villarroya I, Rosich L, Navarro A et al (2013) Sorafenib inhibits cell migration and stroma-mediated bortezomib resistance by interfering B-cell receptor signaling and protein translation in mantle cell lymphoma. Clin Cancer Res 19(3):586–597

    CAS  PubMed  Google Scholar 

  53. Guidetti A, Carlo-Stella C, Locatelli SL, Malorni W, Pierdominici M, Barbati C et al (2012) Phase II study of sorafenib in patients with relapsed or refractory lymphoma. Br J Haematol 158(1):108–119

    CAS  PubMed  Google Scholar 

  54. Greenwald DR, Li H, Luger SM, Go RS, King D, Patel T et al (2013) A phase II study of sorafenib (BAY 43-9006) in recurrent diffuse large B cell lymphoma: an eastern cooperative oncology group study (E1404). J Hematol Oncol 6:46

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guidetti A, Carlo-Stella C, Locatelli SL, Malorni W, Mortarini R, Viviani S et al (2014) Phase II study of perifosine and sorafenib dual-targeted therapy in patients with relapsed or refractory lymphoproliferative diseases. Clin Cancer Res 20(22):5641–5651

    CAS  PubMed  Google Scholar 

  56. Ikezoe T, Nishioka C, Tasaka T, Yang Y, Komatsu N, Togitani K et al (2006) The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol Cancer Ther 5(10):2522–2530

    CAS  PubMed  Google Scholar 

  57. Buckstein R, Kuruvilla J, Chua N, Lee C, Macdonald DA, Al-Tourah AJ et al (2011) Sunitinib in relapsed or refractory diffuse large B-cell lymphoma: a clinical and pharmacodynamic phase II multicenter study of the NCIC Clinical Trials Group. Leuk Lymphoma 52(5):833–841

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shanafelt T, Zent C, Byrd J, Erlichman C, Laplant B, Ghosh A et al (2010) Phase II trials of single-agent anti-VEGF therapy for patients with chronic lymphocytic leukemia. Leuk Lymphoma 51(12):2222–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brander D, Rizzieri D, Gockerman J, Diehl L, Shea TC, Decastro C et al (2013) Phase II open label study of the oral vascular endothelial growth factor-receptor inhibitor PTK787/ZK222584 (vatalanib) in adult patients with refractory or relapsed diffuse large B-cell lymphoma. Leuk Lymphoma 54(12):2627–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruan J, Luo M, Wang C, Fan L, Yang SN, Cardenas M et al (2013) Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes. Blood 121(26):5192–5202

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dredge K, Dalgleish AG, Marriott JB (2003) Thalidomide analogs as emerging anti-cancer drugs. Anticancer Drugs 14(5):331–335

    CAS  PubMed  Google Scholar 

  62. Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ et al (1999) Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 163(1):380–386

    CAS  PubMed  Google Scholar 

  63. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98(1):210–216

    CAS  Google Scholar 

  64. Eleutherakis-Papaiakovou V, Bamias A, Dimopoulos MA (2004) Thalidomide in cancer medicine. Ann Oncol 15(8):1151–1160

    CAS  PubMed  Google Scholar 

  65. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91(9):4082–4085

    PubMed  PubMed Central  Google Scholar 

  66. Kenyon BM, Browne F, D’Amato RJ (1997) Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64(6):971–978

    CAS  PubMed  Google Scholar 

  67. Palumbo A, Facon T, Sonneveld P, Blade J, Offidani M, Gay F et al (2008) Thalidomide for treatment of multiple myeloma: 10 years later. Blood 111(8):3968–3977

    CAS  PubMed  Google Scholar 

  68. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341(21):1565–1571

    CAS  PubMed  Google Scholar 

  69. Pro B, Younes A, Albitar M, Dang NH, Samaniego F, Romaguera J et al (2004) Thalidomide for patients with recurrent lymphoma. Cancer 100(6):1186–1189

    CAS  PubMed  Google Scholar 

  70. Damaj G, Lefrere F, Delarue R, Varet B, Furman R, Hermine O (2003) Thalidomide therapy induces response in relapsed mantle cell lymphoma. Leukemia 17(9):1914–1915

    CAS  PubMed  Google Scholar 

  71. Ruan J, Martin P, Coleman M, Furman RR, Cheung K, Faye A et al (2010) Durable responses with the metronomic rituximab and thalidomide plus prednisone, etoposide, procarbazine, and cyclophosphamide regimen in elderly patients with recurrent mantle cell lymphoma. Cancer 116(11):2655–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ji D, Li Q, Cao J, Guo Y, Lv F, Liu X et al (2016) Thalidomide enhanced the efficacy of CHOP chemotherapy in the treatment of diffuse large B cell lymphoma: A phase II study. Oncotarget 7(22):33331–33339

    PubMed  PubMed Central  Google Scholar 

  73. Song K, Herzog BH, Sheng M, Fu J, McDaniel JM, Chen H et al (2013) Lenalidomide inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma. Cancer Res 73(24):7254–7264

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang L, Qian Z, Cai Z, Sun L, Wang H, Bartlett JB et al (2009) Synergistic antitumor effects of lenalidomide and rituximab on mantle cell lymphoma in vitro and in vivo. Am J Hematol 84(9):553–559

    CAS  PubMed  Google Scholar 

  75. Witzig TE, Wiernik PH, Moore T, Reeder C, Cole C, Justice G et al (2009) Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin’s Lymphoma. J Clin Oncol 27(32):5404–5409

    CAS  PubMed  Google Scholar 

  76. Wiernik PH, Lossos IS, Tuscano JM, Justice G, Vose JM, Cole CE et al (2008) Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin’s lymphoma. J Clin Oncol 26(30):4952–4957

    PubMed  Google Scholar 

  77. Witzig TE, Vose JM, Zinzani PL, Reeder CB, Buckstein R, Polikoff JA et al (2011) An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin’s lymphoma. Ann Oncol 22(7):1622–1627

    CAS  PubMed  Google Scholar 

  78. Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, Pileri SA, Malik F, Macon WR et al (2011) Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype. Cancer 117(22):5058–5066

    CAS  PubMed  Google Scholar 

  79. Eve HE, Carey S, Richardson SJ, Heise CC, Mamidipudi V, Shi T et al (2012) Single-agent lenalidomide in relapsed/refractory mantle cell lymphoma: results from a UK phase II study suggest activity and possible gender differences. Br J Haematol 159(2):154–163

    CAS  PubMed  Google Scholar 

  80. Goy A, Sinha R, Williams ME, Kalayoglu Besisik S, Drach J, Ramchandren R et al (2013) Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol 31(29):3688–3695

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Habermann TM, Lossos IS, Justice G, Vose JM, Wiernik PH, McBride K et al (2009) Lenalidomide oral monotherapy produces a high response rate in patients with relapsed or refractory mantle cell lymphoma. Br J Haematol 145(3):344–349

    CAS  PubMed  Google Scholar 

  82. Trneny M, Lamy T, Walewski J, Belada D, Mayer J, Radford J et al (2016) Lenalidomide versus investigator’s choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): a phase 2, randomised, multicentre trial. Lancet Oncol 17(3):319–331

    CAS  PubMed  Google Scholar 

  83. Ruan J, Martin P, Shah B, Schuster SJ, Smith SM, Furman RR et al (2015) Lenalidomide plus Rituximab as Initial Treatment for Mantle-Cell Lymphoma. N Engl J Med 373(19):1835–1844

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang M, Fayad L, Wagner-Bartak N, Zhang L, Hagemeister F, Neelapu SS et al (2012) Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma: a phase 1/2 clinical trial. Lancet Oncol 13(7):716–723

    PubMed  Google Scholar 

  85. Wang M, Fowler N, Wagner-Bartak N, Feng L, Romaguera J, Neelapu SS et al (2013) Oral lenalidomide with rituximab in relapsed or refractory diffuse large cell, follicular and transformed lymphoma: a phase II clinical trial. Leukemia 27(9):1902–1909

    CAS  PubMed  Google Scholar 

  86. Leonard JP, Jung SH, Johnson J, Pitcher BN, Bartlett NL, Blum KA et al (2015) Randomized Trial of Lenalidomide Alone Versus Lenalidomide Plus Rituximab in Patients With Recurrent Follicular Lymphoma: CALGB 50401 (Alliance). J Clin Oncol 33(31):3635–3640

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tuscano JM, Dutia M, Chee K, Brunson A, Reed-Pease C, Abedi M et al (2014) Lenalidomide plus rituximab can produce durable clinical responses in patients with relapsed or refractory, indolent non-Hodgkin lymphoma. Br J Haematol 165(3):375–381

    CAS  PubMed  Google Scholar 

  88. Kiesewetter B, Willenbacher E, Willenbacher W, Egle A, Neumeister P, Voskova D et al (2017) A phase 2 study of rituximab plus lenalidomide for mucosa-associated lymphoid tissue lymphoma. Blood 129(3):383–385

    CAS  PubMed  Google Scholar 

  89. Nowakowski GS, LaPlant B, Habermann TM, Rivera CE, Macon WR, Inwards DJ et al (2011) Lenalidomide can be safely combined with R-CHOP (R2CHOP) in the initial chemotherapy for aggressive B-cell lymphomas: phase I study. Leukemia 25(12):1877–1881

    CAS  PubMed  Google Scholar 

  90. Nowakowski GS, LaPlant B, Macon WR, Reeder CB, Foran JM, Nelson GD et al (2015) Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-Cell lymphoma: a phase II study. J Clin Oncol 33(3):251–257

    CAS  PubMed  Google Scholar 

  91. Vitolo U, Chiappella A, Franceschetti S, Carella AM, Baldi I, Inghirami G et al (2014) Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol 15(7):730–737

    CAS  PubMed  Google Scholar 

  92. Feldman T, Mato AR, Chow KF, Protomastro EA, Yannotti KM, Bhattacharyya P et al (2014) Addition of lenalidomide to rituximab, ifosfamide, carboplatin, etoposide (RICER) in first-relapse/primary refractory diffuse large B-cell lymphoma. Br J Haematol 166(1):77–83

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin A, Redondo AM, Dlouhy I, Salar A, Gonzalez-Barca E, Canales M et al (2016) Lenalidomide in combination with R-ESHAP in patients with relapsed or refractory diffuse large B-cell lymphoma: a phase 1b study from GELTAMO group. Br J Haematol 173(2):245–252

    CAS  PubMed  Google Scholar 

  94. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD et al (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62(14):4123–4131

    CAS  PubMed  Google Scholar 

  95. Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D et al (2014) Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157(7):1605–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M et al (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343(6168):301–305

    PubMed  Google Scholar 

  97. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O et al (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351(3):250–259

    CAS  PubMed  Google Scholar 

  98. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989

    CAS  PubMed  Google Scholar 

  99. Rivera LB, Bergers G (2015) CANCER. Tumor angiogenesis, from foe to friend. Science 349(6249):694–695

    CAS  PubMed  Google Scholar 

  100. Wong PP, Demircioglu F, Ghazaly E, Alrawashdeh W, Stratford MR, Scudamore CL et al (2015) Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell 27(1):123–137

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of Ningbo (2019A610270), the National Natural Science Foundation of China (81400098), Zhejiang Key Laboratory of Pathophysiology (201909), and the K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Li, N. B-cell non-Hodgkin lymphoma: importance of angiogenesis and antiangiogenic therapy. Angiogenesis 23, 515–529 (2020). https://doi.org/10.1007/s10456-020-09729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09729-7

Keywords

Navigation