Skip to main content
Log in

The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

A Correction to this article was published on 07 November 2023

This article has been updated

Abstract

Histone deacetylases (HDACs) are a family of 18 enzymes that deacetylate lysine residues of both histone and nonhistone proteins and to a large extent govern the process of angiogenesis. Previous studies have shown that specific inhibition of HDAC7 blocks angiogenesis both in vitro and in vivo. However, the underlying molecular mechanisms are not fully understood and hence preclude any meaningful development of suitable therapeutic modalities. The goal of the present study was to further the understanding of HDAC7 epigenetic control of angiogenesis in human endothelial cells using the proteomic approach. The underlying problem was approached through siRNA-mediated gene-expression silencing of HDAC7 in human umbilical vein endothelial cells (HUVECs). To this end, HUVEC proteins were extracted and proteomically analyzed. The emphasis was placed on up-regulated proteins, as these may represent potential direct epigenetic targets of HDAC7. Among several proteins, A-kinase anchor protein 12 (AKAP12) was the most reproducibly up-regulated protein following HDAC7 depletion. This overexpression of AKAP12 was responsible for the inhibition of migration and tube formation in HDAC7-depleted HUVEC. Mechanistically, H3 histones associated with AKAP12 promoter were acetylated following the removal of HDAC7, leading to an increase in its mRNA and protein levels. AKAP12 is responsible for protein kinase C mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3). Phosphorylated STAT3 increasingly binds to the chromatin and AKAP12 promoter and is necessary for maintaining the elevated levels of AKAP12 following HDAC7 knockdown. We demonstrated for the first time that AKAP12 tumor/angiogenesis suppressor gene is an epigenetic target of HDAC7, whose elevated levels lead to a negative regulation of HUVEC migration and inhibit formation of tube-like structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

Abbreviations

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HDACIs:

HDAC inhibitors

HUVECs:

Human umbilical vein endothelial cells

siRNA:

Small interfering RNA

ECGS:

Endothelial cell growth supplement

ChIP:

Chromatin immunoprecipitation

References

  1. Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832

    Article  PubMed  Google Scholar 

  2. Mottet D, Castronovo V (2010) Histone deacetylases: anti-angiogenic targets in cancer therapy. Curr Cancer Drug Targets 10(8):898–913

    Article  PubMed  CAS  Google Scholar 

  3. Beumer JH, Tawbi H (2010) Role of histone deacetylases and their inhibitors in cancer biology and treatment. Curr Clin Pharmacol 5(3):196–208

    Article  PubMed  CAS  Google Scholar 

  4. Mottet D et al (2007) Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 101(12):1237–1246

    Article  PubMed  CAS  Google Scholar 

  5. Chang S et al (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126(2):321–334

    Article  PubMed  CAS  Google Scholar 

  6. Martin M et al (2008) Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis. Proc Natl Acad Sci USA 105(12):4727–4732

    Article  PubMed  CAS  Google Scholar 

  7. Ha CH et al (2008) VEGF stimulates HDAC7 phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis. Arterioscler Thromb Vasc Biol 28(10):1782–1788

    Article  PubMed  CAS  Google Scholar 

  8. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970

    Article  PubMed  CAS  Google Scholar 

  9. Su B et al (2006) SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with vascular endothelial growth factor inhibition. Cancer Res 66(11):5599–5607

    Article  PubMed  CAS  Google Scholar 

  10. Lee SW et al (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9(7):900–906

    Article  PubMed  CAS  Google Scholar 

  11. Su B et al (2010) SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C- Raf/MEK/ERK pathway. J Biol Chem 285(7):4578–4586

    Article  PubMed  CAS  Google Scholar 

  12. Gelman IH (2010) Emerging roles for SSeCKS/Gravin/AKAP12 in the control of cell proliferation, cancer malignancy, and barriergenesis. Genes Cancer 1(11):1147–1156

    Article  PubMed  CAS  Google Scholar 

  13. Jaffe EA et al (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Investig 52(11):2745–2756

    Article  PubMed  CAS  Google Scholar 

  14. Deroanne CF, Lapiere CM, Nusgens BV (2001) In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res 49(3):647–658

    Article  PubMed  CAS  Google Scholar 

  15. Oh YM et al (2009) Prediction and experimental validation of novel STAT3 target genes in human cancer cells. PLoS ONE 4(9):e6911

    Article  PubMed  Google Scholar 

  16. Dauer DJ et al (2005) Stat3 regulates genes common to both wound healing and cancer. Oncogene 24(21):3397–3408

    Article  PubMed  CAS  Google Scholar 

  17. Pranada AL et al (2004) Real time analysis of STAT3 nucleocytoplasmic shuttling. J Biol Chem 279(15):15114–15123

    Article  PubMed  CAS  Google Scholar 

  18. Gartsbein M et al (2006) The role of protein kinase C delta activation and STAT3 Ser727 phosphorylation in insulin-induced keratinocyte proliferation. J Cell Sci 119(Pt 3):470–481

    Article  PubMed  CAS  Google Scholar 

  19. Naviglio S et al (2010) Leptin potentiates antiproliferative action of cAMP elevation via protein kinase A down-regulation in breast cancer cells. J Cell Physiol 225(3):801–809

    Article  PubMed  CAS  Google Scholar 

  20. Akakura S et al (2008) Loss of the SSeCKS/Gravin/AKAP12 gene results in prostatic hyperplasia. Cancer Res 68(13):5096–5103

    Article  PubMed  CAS  Google Scholar 

  21. Choi YK, Kim KW (2008) AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta. FEBS J 275(9):2338–2353

    Article  PubMed  CAS  Google Scholar 

  22. Choi YK et al (2007) AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. J Neurosci 27(16):4472–4481

    Article  PubMed  CAS  Google Scholar 

  23. Cheng C et al (2007) Essential role of Src suppressed C kinase substrates in endothelial cell adhesion and spreading. Biochem Biophys Res Commun 358(1):342–348

    Article  PubMed  CAS  Google Scholar 

  24. Lee SW et al (2011) Inhibition of endothelial cell migration through the downregulation of MMP-9 by A-kinase anchoring protein 12. Mol Medicine Rep 4(1):145–149

    CAS  Google Scholar 

  25. Dimmeler S et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736):601–605

    Article  PubMed  CAS  Google Scholar 

  26. Li L et al (2006) Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes. J Biol Chem 281(6):3237–3243

    Article  PubMed  CAS  Google Scholar 

  27. Choi MC et al (2004) AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity. Oncogene 23(42):7095–7103

    Article  PubMed  CAS  Google Scholar 

  28. Jo U et al (2006) AKAP12alpha is associated with promoter methylation in lung cancer. Cancer Res Treat 38(3):144–151

    Article  PubMed  Google Scholar 

  29. Tessema M et al (2008) Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Res 68(6):1707–1714

    Article  PubMed  CAS  Google Scholar 

  30. Heller G et al (2008) Genome-wide transcriptional response to 5-aza-2′-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res 68(1):44–54

    Article  PubMed  CAS  Google Scholar 

  31. Griffioen AW et al (1996) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56:1111–1117

    PubMed  CAS  Google Scholar 

  32. Dirkx AE et al (2003) Tumor angiogenesis modulates leukocyte-vessel wall interac- tions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63:2322–2329

    PubMed  CAS  Google Scholar 

  33. Hellebrekers DM et al (2006) Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 66(22):10770–10777

    Article  PubMed  CAS  Google Scholar 

  34. Xiao H et al (2003) Tip60 is a co-repressor for STAT3. J Biol Chem 278(13):11197–11204

    Article  PubMed  CAS  Google Scholar 

  35. Yuan ZL et al (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307(5707):269–273

    Article  PubMed  CAS  Google Scholar 

  36. Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280(12):11528–11534

    Article  PubMed  CAS  Google Scholar 

  37. Eccles SA (2004) Parallels in invasion and angiogenesis provide pivotal points for therapeutic intervention. Int J Dev Biol 48:583–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D. Mottet is a Research Associate and A. Bellahcène is a Senior Research Associate of the FNRS. N. Matheus is the FRIA Doctoral Fellow and B. Dumont is the Televie Doctoral Fellow of the FNRS. The authors acknowledge the GIGA-Proteomics Platform of the ULg and Diagenode, Liege, Belgium for experimental support. The authors are particularly thankful to Prof. Irwin Gelman, Roswell Park Cancer Institute, USA, for his helpful discussions. This work was supported by grants from the Walloon Region (NEO-ANGIO), the University of Liège (Centre Anti-Cancéreux) as well as by FRIA and TELEVIE grants from the National Fund for Scientific Research (FNRS), Belgium.

Conflict of interest

Authors have nothing to disclose and declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei Turtoi or Vincent Castronovo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turtoi, A., Mottet, D., Matheus, N. et al. The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells. Angiogenesis 15, 543–554 (2012). https://doi.org/10.1007/s10456-012-9279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9279-8

Keywords

Navigation