Skip to main content
Log in

Capacity inequalities and rigidity of cornered/conical manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove capacity inequalities involving the total mean curvature of hypersurfaces with boundary in convex cones and the mass of asymptotically flat manifolds with non-compact boundary. We then give the analogous of Pölia–Szegö-, Alexandrov–Fenchel- and Penrose-type inequalities in this setting. Among the techniques used in this paper are the inverse mean curvature flow for hypersurfaces with boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For instance, for non-star-shaped initial hypersurfaces, singularities may occur in finite time.

  2. \(\partial ^*\) represents the reduced boundary in the sense of the set of locally finite perimeter in \({\mathbb {R}}^n\).

  3. The function \(\phi \) is sometimes called of electrostatic potential of \(\Sigma .\)

  4. In [13], the authors also provided a link between Neumann parabolicity and capacity of compact subsets.

  5. In fact, one cannot have any compact deformation which is a consequence of the positive mass theorem.

References

  1. Almaraz, S., Barbosa, E., de Lima, L.: A positive mass theorem for asymptotically flat manifolds with a non-compact boundary. Comm. Anal. Geom. 24, 673–715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differential Geom. 59(2), 177–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bray, H.L., Miao, P.: On the capacity of surfaces in manifolds with nonnegative scalar curvature. Invent. Math. 172, 459–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choe, J.: The isoperimetric inequality for minimal surfaces in a Riemannian manifold. J. Reine Angew. Math. 506, 205–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courant, R.: On Plateau’s problem with free boundaries. Proc. Natl. Acad. Sci. USA 31(8), 242–246 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  6. Figalli, A., Indrei, E.: A sharp stability result for the relative isoperimetric inequality inside convex cones. J. Geom. Anal. 23(2), 938–969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freire, A., Schwartz, F.: Mass-capacity inequalities for conformally flat manifolds with boundary. Comm. PDE 39, 98–119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differential Geom. 32(1), 299–314 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guan, P., Li, J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221(5), 1725–1732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gromov, M.: Dirac and Plateau billiards in domains with corners. Cent. Eur. J. Math. 12(8), 1109–1156 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Grüter, M., Jost, J.: Allard type regularity results for varifolds with free boundaries. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e serie 13(1), 129–169 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom. 59, 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Impera, D. Pigola, S., Setti, A.G.: Global maximum principles and divergence theorems on complete manifolds with boundary. J. Reine Angew. Math, to appear

  14. Jauregui, J.L.: Penrose-type inequalities with a Euclidean background. arXiv:1108.4042v1

  15. Lambert, B., Scheuer, J.: The inverse mean curvature flow perpendicular to the sphere. Math. Ann. 364(3), 1069–1093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lambert, B., Scheuer, J.: A geometric inequality for convex free boundary hypersurfaces in the unit ball. Proc. Amer. Math, to appear

  17. Lions, P.L., Pacella, F.: Symmetrization for a class of elliptic equations with mixed boundary conditions. Atti Sem. Mat. Fis. Univ. Modena XXXIV, 75–94 (1985–1986)

  18. Lions, P.L., Pacella, F.: Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions. Indiana Univ. Math. J. 37, 301–324 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, P.L., Pacella, F.: Isoperimetric inequalities for convex cones. Proc. Amer. Math. Soc. 109, 477–485 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marquardt, T.: The inverse mean curvature flow for hypersurfaces with boundary. Dissertation, Freie Universität Berlin (2012)

  21. Marquardt, T.: Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone. J. Geom. Anal. 23, 1303–1313 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marquardt, T.: Weak solutions of inverse mean curvature flow for hypersurfaces with boundary, to appear in J. Reine Angew. Math

  23. Meeks III, W.H., Yau, S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z. 179, 151–168 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morgan, F., Ritoré, M.: Isoperimetric regions in cones. Trans. Amer. Math. Soc. 354(6), 2327–2339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, NJ (1951)

  26. Pacella, F., Tricarico. M.: Symmetrization for a class of eliptic equations with mixed boundary conditions. Atti Sem. Mat. Fis. Univ. Modena XXXIV, 75–94 (1985–1986)

  27. Ritoré, M., Rosales, C.: Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones. Trans. Amer. Math. Soc. 356(11), 4601–4622 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ritoré, M., Vernadakis, E.: Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies. Calc. Var. Par. Differ. Equ. 54(1), 643–663 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwartz, F.: A Volumetric Penrose Inequality for Conformally Flat Manifolds. Annales Henri Poincaré. vol. 12. no. 1. SP Birkhäuser Verlag Basel (2011)

  30. Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Yau, S.T.: The energy and the linear momentum of space–times in general relativity. Comm. Math. Phys. 79(1), 47–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Szegö, G.: Über einige Extremalaufgaben der Potentialtheorie. Math. Z. 31(1), 583–593 (1930). (MR MR1545137)

    Article  MathSciNet  MATH  Google Scholar 

  33. Szegö, G.: Über einige neue Extremaleigenschaften der Kugel. Math. Z. 33, 419–425 (1931). (German)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sternberg, P., Williams, G., Ziemer, W.P.: \(C^{1,1}\)-Regularity of constrained area minimizing hypersurfaces. J. Differ. Equ. 94, 83–94 (1991)

    Article  MATH  Google Scholar 

  35. Volkmann, A.: A monotonicity formula for free boundary surfaces with respect to the unit ball. Comm. Anal. Geom. 24(1), 195–221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80(3), 381–402 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor A. Neves for providing a wonderful scientific environment when he was visiting Imperial College London and where the first drafts of this work were written. Also, he thanks an anonymous referee for suggestions which helped substantially improve the presentation and L. Pessoa for bringing [13] to my attention. While at Imperial College, I was supported by CNPq/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiarlos Cruz.

Additional information

This work was completed with the support of Cnpq/Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, T. Capacity inequalities and rigidity of cornered/conical manifolds. Ann Glob Anal Geom 55, 281–298 (2019). https://doi.org/10.1007/s10455-018-9626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9626-0

Keywords

Navigation