Skip to main content
Log in

On the structure of geodesic orbit Riemannian spaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of geodesic orbit Riemannian spaces that could be characterized by the property that any geodesic is an orbit of a 1-parameter group of isometries. In particular, we discuss some important totally geodesic submanifolds that inherit the property to be geodesic orbit. For a given geodesic orbit Riemannian space, we describe the structure of the nilradical and the radical of the Lie algebra of the isometry group. In the final part, we discuss some new tools to study geodesic orbit Riemannian spaces, related to compact Lie group representations with non-trivial principal isotropy algebras. We discuss also some new examples of geodesic orbit Riemannian spaces, new methods to obtain such examples, and some unsolved questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agricola, I., Ferreira, A.C.: Tangent Lie groups are Riemannian naturally reductive spaces. Adv. Appl. Clifford Algebras (2016). doi:10.1007/s00006-016-0660-3

  2. Agricola, I., Ferreira, A.C., Friedrich, T.: The classification of naturally reductive homogeneous spaces in dimensions \(n\le 6\). Differ. Geom. Appl. 39, 52–92 (2015)

    Article  MATH  Google Scholar 

  3. Alekseevsky, D.V., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 3769–3789 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alekseevsky, D.V., Nikonorov, Yu.G.: Compact Riemannian manifolds with homogeneous geodesics. SIGMA Symmetry Integrab. Geom. Methods Appl. 5, 093, 16 (2009)

  5. Akhiezer, D.N., Vinberg, È.B.: Weakly symmetric spaces and spherical varieties. Transform. Groups 4, 3–24 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreev, E.M., Vinberg, È.B., Èlashvili, A.G.: Orbits of greatest dimension in semi-simple linear Lie groups, Funktsional Anal. i Prilozen. 1(4), pp. 3–7 (1967). (Russian); English translation: Funct. Anal. Appl. 1(4), pp. 257–261 (1967)

  7. del Barco, V.: Homogeneous geodesics in pseudo-Riemannian nilmanifolds. Adv. Geom. 16(2), 175–187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berard Bergery, L.: Sur la courbure des metriqes riemanniennes invariants des groupes de Lie et des espaces homogenes. Ann. Scient. Ec. Norm. Sup. 11, 543–576 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bérard Bergery, L.: Les escapes homogènes riemainniens de dimension 4. In: Géométrie Riemannienne en Dimension 4. Séminaire Arthur Besse (Paris 1978/79), Textes Mathématiques, pp. 40–60. Paris, Cedic (Zbl 0482.53036, MR769130) (1981)

  10. Berger, M.: Les varietes riemanniennes homogenes normales a courbure strictement positive. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV Ser. 15, 179–246 (1961)

    MATH  Google Scholar 

  11. Berestovskii, V.N., Nikonorov, Yu.G.: On \(\delta \)-homogeneous Riemannian manifolds. Differ. Geom. Appl. 26(5), 514–535 (2008)

  12. Berestovskii, V.N., Nikonorov, Yu.G.: On \(\delta \)-homogeneous Riemannian manifolds, II. Sib. Math. J. 50(2), 214–222 (2009)

  13. Berestovskii, V.N., Nikonorov, Yu.G.: Killing vector fields of constant length on Riemannian manifolds. Sib. Math. J. 49(3), 395–407 (2008)

  14. Berestovskii, V.N., Nikonorov, Yu.G.: Clifford-Wolf homogeneous Riemannian manifolds. J. Differ. Geom. 82(3), 467–500 (2009)

  15. Berestovskii, V.N., Nikonorov, Yu.G.: Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. Ann. Glob. Anal. Geom. 45(3), 167–196 (2014)

  16. Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces. Ann. Glob. Anal. Geom. 15, 153–156 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Besse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1987)

    Book  MATH  Google Scholar 

  18. Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 1–3. Translated from the French. Reprint of the: English Translation, p. 1998. Springer-Verlag, Berlin (1989)

  19. Cairns, G., HinićGalić, A., Nikolayevsky, Y., Tsartsaflis, I.: Geodesic bases for Lie algebras. Linear Multilinear Algebra 63, 1176–1194 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cartan, É.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. de France 54, 214–264 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cartan, É.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. de France 55, 114–134 (1927)

    Article  MathSciNet  Google Scholar 

  22. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, Providence (2008)

    Book  MATH  Google Scholar 

  23. Chen, Z., Nikonorov, Yu.G., Nikonorova, Y.V.: Invariant Einstein metrics on Ledger-Obata spaces. Differ. Geom. Its Appl. 50, 71–87 (2017)

  24. Chen, Z., Wolf, J.A.: Pseudo-Riemannian weakly symmetric manifolds. Ann. Glob. Anal. Geom. 41, 381–390 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dotti, M.I., Miatello, R.J.: Transitive isometry groups with noncompact isotropy. Pac. J. Math. 131(1), 167–178 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dus̆ek, Z.: The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds. J. Geom. Phys. 60, 687–689 (2010)

    Article  MathSciNet  Google Scholar 

  27. Dus̆ek, Z., Kowalski, O.: Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr. 254–255, 87–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dus̆ek, Z., Kowalski, O., Nikc̆ević, S.: New examples of Riemannian g.o. manifolds in dimension 7. Differ. Geom. Appl. 21, 65–78 (2004)

    Article  MathSciNet  Google Scholar 

  29. Élashvili, A.G.: Canonical form and stationary subalgebras of points in general position for simple linear Lie groups, Funktsional. Anal. i Prilozen. 6(1), pp. 51–62(1972) (Russian); English translation. Funct. Anal. Appl. 6(1), pp. 44–53 (1972)

  30. Élashvili, A.G.: Stationary subalgebras of points of general position for irreducible linear Lie groups, Funktsional. Anal. i Prilozen. 6(2), pp. 65–78 (1972) (Russian); English translation: Funct. Anal. Appl. 6(2), 139–148 (1972)

  31. Jacobson, N.: Lie Algebras. Interscience Publishers, New York-London (1962)

    MATH  Google Scholar 

  32. Gordon, C.: Naturally reductive homogeneous Riemannian manifolds. Can. J. Math. 37(3), 467–487 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gordon, C.: Homogeneous Riemannian manifolds whose geodesics are orbits. In: Gindikin, S. (ed.) Topics in geometry. In memory of Joseph D’Atri. Progress in Nonlinear Differential Equations Application, vol. 20, pp. 155–174. BirkhÄauser Boston, Boston, MA (Zbl 0861.53052, MR1390313) (1996)

  34. Gordon, C., Wilson, E.N.: The fine structure of transitive Riemannian isometry groups. I. Trans. Am. Math. Soc. 289(1), 367–380 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Math. 80. Academic Press, New York (1978)

    MATH  Google Scholar 

  36. Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups, Springer Monographs in Mathematics. Springer, New York (2012)

    Book  MATH  Google Scholar 

  37. Hsiang, W.C., Hsiang, W.Y.: Differentiable actions of compact connected classical group II. Ann. Math. 92, 189–223 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hsiang, W.Y.: Cohomology Theory of Topological Transformation Groups. Springer Verlag, New York, Heidelberg, Berlin (1975)

    Book  MATH  Google Scholar 

  39. Il’inskii, D.G.: Stationary subalgebras in general position for locally strongly effective actions, Matematicheskie Zametki, 88(5), pp. 689–707 (2010) (Russian). English translation: Mathematical Notes 88(5), pp. 661–677 (2010)

  40. Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. Lond. Math. Soc. 15, 35–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. I. A Wiley-Interscience Publication, New York (1963)

    MATH  Google Scholar 

  42. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. II. A Wiley-Interscience Publication, New York (1969)

    MATH  Google Scholar 

  43. Kowalski, O., Vanhecke, L.: Classification of five-dimensional naturally reductive spaces. Math. Proc. Camb. Phil. Soc. 97, 445–463 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. unione Mat. Ital. B (7) 5(1), 189–246 (1991)

    MathSciNet  MATH  Google Scholar 

  45. Krämer, M.: Hauptisotropiegruppen bei Endlich Dimensionalen Darstellungen Kompakter Halbeinfacher Liegruppen. Diplomarbeit, Bonn (1966)

    Google Scholar 

  46. Mostow, G.D.: Fully reducible subgroups of algebraic groups. Am. J. Math. 78, 200–221 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nikonorov, Yu.G.: Geodesic orbit manifolds and Killing fields of constant length. Hiroshima Math. J. 43(1), 129–137 (2013)

  48. Nikonorov, Yu.G.: Geodesic orbit Riemannian metrics on spheres. Vladikavkaz. Mat. Zh. 15(3), 67–76 (2013)

  49. Nikonorov, Yu.G.: Killing vector fields of constant length on compact homogeneous Riemannian manifolds. Ann. Glob. Anal. Geom. 48(4), 305–330 (2015)

  50. Riehm, C.: Explicit spin representations and Lie algebras of Heisenberg type. J. Lond. Math. Soc. 29, 46–62 (1984)

    MathSciNet  MATH  Google Scholar 

  51. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)

    MathSciNet  MATH  Google Scholar 

  52. Storm, R.: A new construction of naturally reductive spaces, Prerpint, (2016) arXiv:1605.00432

  53. Taft, E.J.: Orthogonal conjugacies in associative and Lie algebras. Trans. Am. Math. Soc. 113, 18–29 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tamaru, H.: Riemannian geodesic orbit space metrics on fiber bundles. Algebras Groups Geom. 15, 55–67 (1998)

    MathSciNet  MATH  Google Scholar 

  55. Tamaru, H.: Riemannian g.o. spaces fibered over irreducible symmetric spaces. Osaka J. Math. 36, 835–851 (1999)

    MathSciNet  MATH  Google Scholar 

  56. Wilson, E.N.: Isometry groups on homogeneous nilmanifolds. Geom. Dedic. 12(3), 337–346 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wolf, J.A.: A compatibility condition between invariant riemannian metrics and Levi-Whitehead decompositions on a coset space. Trans. Am. Math. Soc. 139, 429–442 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wolf, J.A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142. American Mathematical Society, Providence, RI (Zbl1156.22010, MR2328043) (2007)

  59. Wolf, J.A.: On locally symmetric spaces of non-negative curvature and certain other locally homogeneous spaces. Comment. Math. Helv. 37(1), 266–295 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wüstner, M.: Factoring a Lie group into a compactly embedded and a solvable subgroup. Monatsh. Math. 130(1), 49–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yakimova, O.S.: Weakly symmetric Riemannian manifolds with a reductive isometry group, (Russian) Mat. Sb. 195(4), pp. 143–160 (2004); English translation in Sb. Math. 195(3–4), pp. 599–614 (2004)

  62. Yan, Z., Deng, Sh: Finsler spaces whose geodesics are orbits. Differ. Geom. Appl. 36, 1–23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ziller, W.: Weakly symmetric spaces. In: Gindikin, S. (ed.) Topics in geometry. In memory of Joseph DAtri. Progress in Nonlinear Differential Equations Application, vol. 20, pp. 355–368. BirkhÄauser Boston, Boston, MA (Zbl 0860.53030, MR1390324) (1996)

Download references

Acknowledgements

The author is indebted to Prof. Valerii Berestovskii, to Prof. Carolyn Gordon, and to Prof. Èrnest Vinberg for helpful discussions concerning this paper. The author is grateful to the anonymous referee for helpful comments and suggestions that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriĭ Gennadievich Nikonorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonorov, Y.G. On the structure of geodesic orbit Riemannian spaces. Ann Glob Anal Geom 52, 289–311 (2017). https://doi.org/10.1007/s10455-017-9558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9558-0

Keywords

Mathematics Subject Classification

Navigation