Skip to main content

Advertisement

Log in

A Frölicher-type inequality for generalized complex manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove a Frölicher-type inequality for a compact generalized complex manifold \(M\), and show that the equality holds if and only if \(M\) satisfies the generalized \(\partial \bar{\partial }\)-Lemma. In particular, this gives a unified proof of analogous results in the complex and symplectic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angella, D., Tomassini, A.: Inequalities à la Frölicher and cohomological decompositions, to appear in J. Noncommut. Geom., arXiv:1403.2298

  2. Angella, D., Tomassini, A.: On the \(\partial \overline{\partial }\)-lemma and Bott–Chern cohomology. Invent. Math. 192(1), 71–81 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brylinski, J.-L.: A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Cavalcanti, G.: The decomposition of forms and cohomology of generalized complex manifolds. J. Geom. Phys. 57(1), 121–132 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, T.-W., Ho, C.-I., Teh, J.-H.: Bott–Chern cohomology and \(\delta _+\delta _-\)-lemma for bigeneralized Hermitian manifolds, preprint, arXiv:1311.4667

  6. Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frölicher, A.: Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Nat. Acad. Sci. USA 41, 641–644 (1955)

    Article  MATH  Google Scholar 

  8. Goodwillie, T.: Cyclic homology, derivations, and the free loopspace. Topology 24(2), 187–215 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gualtieri, M.: Generalized complex geometry. Ann. Math. (2) 174(1), 75–123 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schweitzer, M.: Autour de la cohomologie de Bott–Chern, preprint, arXiv:0709.3528

  12. Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: I. J. Differ. Geom. 91(3), 383–416 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: II. J. Differ. Geom. 91(3), 417–443 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Tseng, L.-S., Yau, S.-T.: Generalized cohomologies and supersymmetry. Commun. Math. Phys. 326(3), 875–885 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Varouchas, J.: Propriétés cohomologiques d’une classe de variétés analytiques complexes compactes, Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, Lecture Notes in Math., vol. 1198, Springer, Berlin, pp. 233–243 (1986)

Download references

Acknowledgments

The work of the first author described in this paper was substantially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK404412 & CUHK400213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwokwai Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K., Suen, YH. A Frölicher-type inequality for generalized complex manifolds. Ann Glob Anal Geom 47, 135–145 (2015). https://doi.org/10.1007/s10455-014-9439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9439-8

Keywords

Navigation