Skip to main content
Log in

Interaction between the thinly encrusting sponge Clathria venosa and the branched coral Acropora palmata

  • Original Research
  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Acropora palmata is colonized by encrusting sponges, such as Clathria venosa, in the lower zones of coral branches, especially in areas devoid of living tissue. To analyze the responses of tissues involved in the areas of interaction, we investigated the advancement rates and the sponge growth and recovery rates after the removal of sponge tissue. To assess the advance or retreat rates of the sponge and coral, steel screws were placed at the limits of the sponge/coral interaction area (treatment 1), and the response of the coral and sponge tissues was recorded. In treatment 2, the sponge was removed by scraping and cleaning the area. In treatment 3, the sponge was removed, and the area occupied by the sponge was filled with epoxy putty. We found that the interaction was a standoff (T1) in 64.2% of cases, the sponge advanced in 7.1% of cases, and regression was observed in 28.7% of cases. Following its partial removal of the sponge (T2), C. venosa recovered the formerly occupied space in one month, whereas in T3, growth and recovery required 3 months. Clathria venosa is a colonizing species of the lower parts of the bases and branches of A. palmata, which despite presenting a rapid regeneration rate, no evidence was found that in contact with the coral, the sponge generates tissue deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Aerts L (2000) Dynamics behind standoff interactions in three reef sponges species and the coral Montastraea cavernosa. Mar Ecol 21(3–4):191–204

    Article  Google Scholar 

  • Aerts LAM, Van Soest RWM (1997) Quantification of sponge/coral interactions in a physically stressed reef-community, NE Colombia. Mar Ecol Prog Ser 148:125–134

    Article  Google Scholar 

  • Alcolado PM (1984) New species of sponges from Cuba. Poeyana 271:1–22

    Google Scholar 

  • Ayling A (1983) Growth and regeneration rates in thinly encrusting demospongiae from temperature waters. Biol Bull 165:343–352

    Article  PubMed  Google Scholar 

  • Benzoni F, Calcinai B, Eisinger M, Klaus R (2008) Coral disease mimic: sponge attacks Porites lutea in Yemen. Coral Reefs 27:695

    Article  Google Scholar 

  • Busutil L, Alcolado PM (2012) Test of an urban organic pollution index based on Cuban reef sponge communities. Ser Oceanol 10:90–103

    Google Scholar 

  • Carballo JL, Bautista E, Nava H, Crúz-Barraza JA, Chávez JA (2013) Boring sponges, an increasing threat for corals reefs affected by bleaching events. Ecol Evol 3(4):872–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadwick NE, Morrow KM (2011) Competition among sessile organisms on coral reefs. In: Dubinski Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York, pp 324–350

    Google Scholar 

  • Cháves-Fonnegra A, Zea S (2011) Coral colonization by the encrusting excavating Caribbean sponge Cliona delitrix. Mar Ecol 32:162–173

    Article  Google Scholar 

  • Cháves-Fonnegra A, López-Victoria M, Parra-Velandia F, Zea S (2005) Ecología química de las esponjas excavadoras Cliona aprica, C. caribbaea, C. delitrix y C. tenuis. Bol Inv Mar Cost 34:43–67

    Google Scholar 

  • Cháves-Fonnegra A, Zea S (2007) Observations of reef coral undermining by the Caribbean excavating sponge Cliona delitrix (Desmospondiae, Hadromerida). In: Custódio MR, Lôbo-Hajdu G, Haidu E, Guilherme M (Eds) Porifera research: biodiversity, innovations and sustainability pp 247–254

  • Díaz J, Barrios L, Cendales M, Garzón-Ferreira J, Geister J, López-Victoria M, Ospina G, Parra-Velandia F, Pinzón J, Vargas-Angel B, Zapata F, Zea S (2000) Áreas coralinas de Colombia. Invemar Santa Marta. Ser Publ Espec 5:30–136

    Google Scholar 

  • Engel S, Pawlik JR (2000) Allelopathic activities of sponge extracts. Mar Ecol Prog Ser 207:273–281

    Article  Google Scholar 

  • García-Urueña RP, Alvarado EM, Acosta A (1996) Crecimiento del coral Acropora palmata (Lamarck, 1886) en el Parque nacional natural corales del Rosario, Caribe Colombiano. Bol Inv Mar Cost 25:7–18

    Google Scholar 

  • García-Urueña R, Garzón-Machado M, Sierra-Escrigas S (2020) Current assessment of the Acropora palmata and Acropora cervicornis populations in Tayrona national natural park, Colombian Caribbean. Bol Inv Mar Cost 49:137–166

    Article  Google Scholar 

  • González-Rivero M, Yakob L, Mumby PJ (2011) The role of sponge competition on coral reef alternative steady states. Ecol Mod 222:1847–1853

    Article  Google Scholar 

  • Halperin AA, Cháves-Fonnegra A, Gilliam DS (2016) Effects of excavating-sponge removal on coral growth. J Mar Biol Assoc 96:473–479

    Article  Google Scholar 

  • Hidaka M, Yamazato K (1984) Interspecific interactions in a scleractinian coral Galaxea fasicularis: induced formation of sweeper tentacles. Coral Reefs 3:77–85

    Article  Google Scholar 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158. https://doi.org/10.3389/fmars.2017.00158

    Article  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Lages BG, Hovell Fleury BG, AM, Rezende CM, Pinto AC, Creed JC, (2012) Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic. Mar Biol 159(7):1551–1559

    Article  CAS  Google Scholar 

  • Lapid ED, Wielgus J, Chadwick-Furman NE (2004) Sweeper tentacles of the brain coral Platygyra daedalea: induced development and effect on competitors. Mar Ecol Prog Ser 282:161–171

    Article  Google Scholar 

  • López-Victoria M, Zea S, Weil E (2006) Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Mar Ecol Prog Ser 312:113–121

    Article  Google Scholar 

  • Martínez K, Rodríguez-Quintal JG (2012) Estructura poblacional de Acropora palmata (Scleractinia: Acroporidae) en el parque nacional San Esteban, Venezuela. Bol Inst Oceanogr Venezuela 51:129–137

    Google Scholar 

  • McLean EL, Rützler K, Pooler PS (2015) Competing for space: factors that lead to sponge overgrowth when interacting with octocoral. J Mar Sci 5:64–80

    Google Scholar 

  • Milne Edwards H, Haime J (1851) Recherches sur les polypiers. Mémoire 7. Monographie des Poritides. Ann Sci Nat, Zoologie, Series 3, 16:21–70

  • Nava H, Carballo JL (2013) Environmental factors shaping boring sponge assemblages at Mexican Pacific coral reefs. Mar Ecol 34(3):269–279. https://doi.org/10.1111/maec.12012

    Article  CAS  Google Scholar 

  • Pang RK (1973) The ecology of some Jamaican excavating sponges. Bull Mar Sci 23:227–243

    Google Scholar 

  • Pineda-Munive EM, García-Urueña R, Zea S (2017) Acropora coral colonies as microhabitats for sponges in Tayrona national natural park, Colombian Caribbean. Mar Ecol 38:1–12

    Article  Google Scholar 

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York

    Book  Google Scholar 

  • Rossi G, Montori S, Cerrano C, Calcinai B (2015) The coral killing sponge Chalinula nematifera (Porifera: Haplosclerida) along the eastern coast of Sulawesi Island (Indonesia). Ital J Zool 81(1):143–148

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1 bioerosion rates. PSZN Mar Ecol 23:313–326

    Article  Google Scholar 

  • Schönberg CHL (2003) Substrate effects on the bioeroding Demosponge Cliona orientalis. 2. Substrate colonization and tissue growth. PSZN I: Mar Ecol 24:59–74

    Google Scholar 

  • Schönberg CHL, Wilkinson CR (2001) Induced colonization of coral by a Clionid bioeroding sponge. Coral Reefs 20:69–76

    Article  Google Scholar 

  • Sebens KP (1986) Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol Monogr 56(1):23–96

    Article  Google Scholar 

  • Turicchia E, Hoeksema B, Ponti M (2018) The coral-killing sponge Chalinula nemaifera as a common substrate generalist in Komodo national park, Indonesia. Mar Biol Res 14(8):827–833

    Article  Google Scholar 

  • Valderrama D, Zea S (2003) Esquemas de distribución de esponjas arrecifales (Porifera) del noroccidente del golfo de Urabá, Caribe Sur, Colombia. Bol Invest Mar Cost 32:37–56

    Google Scholar 

  • Wulff JL (2006) Resistance vs recovery: morphological strategies of coral reef sponges. Funct Ecol 20:699–708

    Article  Google Scholar 

  • Wulff JL (2010) Regeneration of sponges in ecological context: is regeneration an integral part of life history and morphological strategies? Integr Comp Biol 50:494–505

    Article  PubMed  Google Scholar 

  • Wulff JL (2012) Ecological interactions and the distribution, abundance, and diversity of sponges. Adv Mar Biol 61:273–344

    Article  PubMed  Google Scholar 

  • Wulff JL (2016) Sponge contribution to the geology and biology of reefs: past, present, and future. In: Hubbard D, Rogers C, Lipps J, Stanley Jr G (eds) Coral reefs at the crossroads. Coral reefs of the world, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7567-0_5

    Chapter  Google Scholar 

  • Zea S (2014) Taxonomy of Clathria (Thalysias) (Demospongiae: Poecilosclerida: Microcionidae) from the Colombian Caribbean, with description of three new species. Zootaxa 3835(4):401–436

    Article  PubMed  Google Scholar 

  • Zea S, López-Victoria M, Weil E (2003) Impacto de esponjas excavadoras incrustantes en arrecifes del Caribe colombiano: mecanismos y efectos sobre la comunidad arrecifal de la Isla de San Andrés y las Islas del Rosario. Universidad Nacional de Colombia, Informe temático divulgativo, p 57

    Google Scholar 

  • Zea S (1987) Esponjas del Caribe colombiano: Un catálogo sistemático y una guía de campo. Primera edición. Editorial Catálogo científico p 286

Download references

Acknowledgments

We thank the research group “Ecology and Diversity of Marine Algae and Coral Reefs” of the University of Magdalena in the Young Researcher-Colciencias period of the scholarship internship (Convocation 706 of 2015).

Funding

This work was funded by Colciencias as part of the project “Acropora: key genus for its conservation: genetic diversity, connectivity and ecological updates of their populations in the Colombian Caribbean” (111771451011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío García-Urueña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: Dr. Télesphore Sime-Ngando

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Munive, E.M., García-Urueña, R. Interaction between the thinly encrusting sponge Clathria venosa and the branched coral Acropora palmata. Aquat Ecol 56, 973–981 (2022). https://doi.org/10.1007/s10452-022-09981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-022-09981-7

Keywords

Navigation