Skip to main content
Log in

Prey contribution to the diet of Octopus insularis (Leite and Haimovici, 2008) using stable isotopes and stomach content analysis in the Western Gulf of Mexico

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Octopus insularis is an active and opportunistic predator, its diet depends on the habitat in which it develops and the abundance and distribution of the species it preys on. Despite its importance for fisheries, little is known about the trophic relationships of this octopus. For this reason, the main objective of this study was to describe its diet in the southern Gulf of Mexico combining stable δ13C and δ15N isotopes and stomach content analysis. Stable δ13C and δ15N isotope analysis were performed in muscle tissue of octopuses and their prey. In addition, stomachs were analyzed to identify consumed prey and to obtain percentages of numerical and gravimetric importance, the frequency of occurrence and the index of relative importance. The diet did not show differences between year, sex, or size. Eight crustacean and three fish genera were identified as the main components in the diet. Crustaceans appeared as the main prey group, and the most important prey within this group was Mithraculus sp., and for the fish group it was Anchoa sp. The isotope analysis indicates a high contribution to predator´s muscle tissue from both crustaceans and fish. In one hand, results indicate that crustaceans as prey are important for the octopus population in the whole distribution area. On the other hand, isotope values positioned O. insularis as an intermediate trophic level predator, placing it as an efficient vehicle of energy transfer between lower to higher trophic levels in the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Ortiz-Lozano (2018)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The dataset that supports the findings in this study will be available to anyone upon request.

References

  • Abele LG, Kim W (1986) An illustrated guide to the marine decapod crustaceans of Florida (Vol. 8). N. 1 Part 1 & 2. Department of Environmental Regulation, Florida

  • Arenas-Fuentes V, Hernández-Aguilera JL (2000) Fauna carcinológica de México. Crustáceos estomatópodos y decápodos del Golfo de México. Río Bravo, Tamaulipas a Cabo Catoche, Q. Roo. Universidad Nacional Autónoma de México. Instituto de Ciencias del Mar y Limnología. Informe final SNIB-CONABIO. Proyecto No. H022. México, D.F.

  • Avendaño O, Velázquez-Abunader I, Fernández-Jardón C, Ángeles-González LE, Hernández-Flores A, Guerra Á (2019) Biomass and distribution of the red octopus (Octopus maya) in the north-east of the Campeche Bank. J Mar Biol Assoc UK 99:1317–1323. https://doi.org/10.1017/S0025315419000419

    Article  Google Scholar 

  • Avendaño O, Hernández-Flores A, Velázquez-Abunader I, Fernández-Jardón C, Cuevas-Jimenez A, Guerra, Á (2020) Potential biomass and distribution of octopus in the eastern part of the Campeche Bank (Yucatán, Mexico). Sci Mar 84. https://doi.org/10.3989/scimar.05007.01A

  • Barroso CX, Matthews-Cascon H (2016) Mollusks preyed by Octopus insularis (Mollusca, Cephalopoda) in a tropical area in northeastern Brazil. Pan-Am J Aquat Sci 11:258–263

    Google Scholar 

  • Bethea DM, Hale L, Carlson JK, Cortés E, Manire CA, Gelsleichter J (2007) Geographic and ontogenetic variation in the diet and daily ration of the bonnethead shark, Sphyrna tiburo, from the eastern Gulf of Mexico. Mar Biol 152:1009–1020

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. J Biochem Phys 37:911–917

    CAS  Google Scholar 

  • Bouth HF, Leite TS, De Lima FD, Lins-Oliveira JE (2011) Atol das Rocas: an oasis for Octopus insularis juveniles (Cephalopoda: Octopodidae). Zoologia 28:45–52

    Article  Google Scholar 

  • Breiby A, Jobling M (1985) Predatory role of the flying squid (Todarodes sagittatus) in North Norwegian waters. NAFO Sci Coun Stud 9:125–132

    Google Scholar 

  • Cailliet GM (1977) Several approaches to the feeding ecology of fishes. In: Simenstad CA, Lipovsky SJ (eds) Fish Food Habits Studies, 1st Pacific Northwest Technical Workshop Proceedings. Astoria, OR, October 13–15. University of Washington. Seattle, WA: Washington Sea-Grant Publications, pp 1–13

  • Carlisle AB, Goldman KJ, Litvin SY, Madigan DJ, Bigman JS, Swithenbank AM, Kline TC, Block BA (2015) Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. P Roy Soc B-Biol Sci 282:20141446

    Google Scholar 

  • Carreón-Palau L, Parrish CC, Del Angel-Rodríguez JA, Pérez-España H, Aguiñiga-García S (2013) Revealing organic carbon sources fueling a coral reef food web in the Gulf of Mexico using stable isotopes and fatty acids. Limnol Oceanogr 58:593–612

    Article  Google Scholar 

  • Cherel Y, Hobson KA (2005) Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proc R Soc B 272:1601–1607

    Article  Google Scholar 

  • CONANP (2017) Programa de Manejo: Parque Nacional Sistema Arrecifal Veracruzano. Comisión Nacional de Áreas Naturales Protegidas, México

    Google Scholar 

  • CONAPESCA (2013) Anuario estadístico de acuacultura y pesca. https://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca. Accessed 01 May 2020

  • CONAPESCA (2018) México se mantiene como tercer productor de pulpo a nivel mundial. Gobierno de México. https://www.gob.mx/conapesca/articulos/mexico-se-mantiene-como-el-tercer-productor-de-pulpo-a-nivel-mundial?idiom=es. Accessed 01 November 2019

  • Conde-Moreno M (2009) Ecología trófica del tiburón bironche, Rhizoprionodon longurio (Jordan & Gilbert, 1882), en dos áreas del Pacífico Mexicano. (Master Thesis). Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas

  • Dantas RSJ (2017) Ecología trófica do polvo Octopus insularis (Cephalopoda: Octopodidae): comparações metodológicas e nova perspectiva através do uso de isótopos estáveis de carbono e nitrogênio. Dissertação (Mestrado em Ecologia) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, 2017. 79

  • Dantas RJS, Leite TS, De Albuquerque CQ (2020) Assessing the diet of octopuses: traditional techniques and the stable isotopes approach. J Molluscan Stud. https://doi.org/10.1093/mollus/eyaa003

    Article  Google Scholar 

  • DeNiro M, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:3341–3351

    Google Scholar 

  • France RL, Peters RH (1997) Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can J Fish Aquat Sci 54:1255–1258

    Article  Google Scholar 

  • García-Cubas A, Reguero M (2007) Catálogo ilustrado de moluscos del Golfo de México y Mar Caribe. UNAM, México

    Google Scholar 

  • González-Gómez R, Briones-Fourzán P, Álvarez-Filip L, Lozano Álvarez E (2018) Diversity and abundance of conspicuous macrocrustaceans on coral reefs differing in level of degradation. PeerJ 6:e4922. https://doi.org/10.7717/peerj.4922

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Gómez R, Meiners-Mandujano C, Morrillo PS, Jiménez-Badillo L, Markaida U (2020) Reproductive dynamics and population structure of Octopus insularis from the Veracruz reef system marine protected area, Mexico. Fish. Res 221, 105385. https://doi.org/10.1016/j.fishres.2019.105385

  • Hermoso-Salazar AM, Arvizu-Coyotzi K (2007) Los Estomatópodos y Decápodos del Parque Nacional Sistema Arrecifal Veracruzano. In: Granados-Barba A, Abarca-Arenas LG, Vargas-Hernández JM (eds) Investigaciones Científicas en el Sistema Arrecifal Veracruzano. Universidad Autónoma de Campeche. ISBN 968–5722–53–6, pp 101–112.

  • Hyslop EJ (1980) Stomach contents analysis, a review of methods and their application. J Fish Biol 17:411–429

    Article  Google Scholar 

  • Ibáñez CM, Chong JV (2008) Feeding ecology of Enteroctopus megalocyathus (Cephalopoda: Octopodidae) in southern Chile. J Mar Biol Asscoc UK 88:793–798

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602

    Article  Google Scholar 

  • Jereb P, Roper CFE, Norman MD, Finn JK, Hochberg FG (2014) Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Volume 3. Octopods and vampire squids. Species Catalogue for Fishery Purposes, FAO. No. 4., vol III. 382 pp

  • Jiménez-Badillo ML, Cruz-Rodas S, Lozano-Aburto MA, Rodríguez-Quiroz G (2014) Problemática ambiental y socioeconómica del Parque Nacional Sistema Arrecifal Veracruzano. Investigación y Ciencia 22:58–64

    Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  Google Scholar 

  • Leite TS, Haimovici M, Molina W, Warnke K (2008) Morphological and genetic description of Octopus insularis, a new cryptic species in the Octopus vulgaris complex (Cephalopoda: Octopodidae) from the tropical southwestern Atlantic. J Mollus Stud 74:63–74

    Article  Google Scholar 

  • Leite TS, Haimovici M, Mather J (2009) Octopus insularis (Octopodidae), evidences of a specialized predator and a time-minimizing hunter. Mar Biol 156:2355–2367

    Article  Google Scholar 

  • Leite TS, Torrecilla-Batista A, Lima FD, Barbosa JC, Mather J (2016) Geographic variability of Octopus insularis diet: from oceanic island to continental populations. Aquat Biol 25:17–27

    Article  Google Scholar 

  • Lombarte A, Chic Ò, Parisi-Baradad V, Olivella R, Piera J, García-Ladona E (2006) A web-based environment from shape analysis of fish otoliths. The AFORO database. Sci Mar 70:147–152

  • Madigan DJ, Litvin SY, Popp BN, Carlisle AB, Farwell CJ, Block BA (2012) Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis). PLoS ONE 7:e49220. https://doi.org/10.1371/journal.pone.0049220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado E, Rangel-Huerta E, González-Gómez R, Fajardo-Alvarado G, Morillo-Velarde PS (2019) Octopus insularis as a new marine model for evolutionary developmental biology. Biology Open 8, bio046086. https://doi.org/10.1242/bio.046086

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulphur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Medina M, Baqueiro E, Aldana-Aranda D (2006) Guía ilustrada de conchas y caracoles de la Península de Yucatán. CYTED. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Yucatán, México, p 497

    Google Scholar 

  • Ménard F, Lorrain A, Potier M, Marsac F (2007) Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar Biol 153:141–152

    Article  Google Scholar 

  • Mier-Uco LA (2011) Catálogo de otolitos de peces capturados en el Parque Nacional Sistema Arrecifal Veracruzano (Tesis de Licenciatura). Instituto Tecnológico de Boca del Río, Veracruz, México

    Google Scholar 

  • Minson DJ, Ludlow MM, Troughton JH (1975) Differences in natural carbon isotope ratios of milk and hair from cattle grazing tropical and temperature pastures. Nature 256. https://doi.org/10.1038/256602a0

  • Navarro J, Sáez-Liante R, Albo-Puigserver M, Coll M, Palomera I (2017) Feeding strategies and ecological roles of three predatory pelagic fish in the western Mediterranean Sea. Deep Sea Res PT II 140:9–17

    Article  Google Scholar 

  • Newsome SD, Tinker MT, Monson DH, Oftedal OT, Ralls K, Staedler MM, Estes JA (2009) Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90:961–974

    Article  Google Scholar 

  • Olmos-Pérez L, Roura A, Pierce GJ, Boyer S, González AF (2017) Diet Composition and Variability of Wild Octopus vulgaris and Alloteuthis media (Cephalopoda) Paralarvae: a Metagenomic Approach. Front Physiol 8. https://doi.org/10.3389/fphys.2017.00321

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PloS one 5(3)e9672. https://doi.org/10.1371/journal.pone.0009672

  • Perry H, Larsen K (2004) A picture guide to shelf invertebrates from the northern Gulf of Mexico. NOAA/NMFS, USA, p 277

    Google Scholar 

  • Pinheiro E, Layman CA, Castello JP, Leite TS (2017) Trophic role of demersal mesopredators on rocky reefs in an equatorial Atlantic Ocean island. J Appl Ichthyol 33:47–53

    Article  Google Scholar 

  • Pinkas L, Oliphant MS, Iverson K (1971) Food habits of albacore, bluefin tuna and bonito in California waters. Fish Bull 152:1–105

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Rasero M, González AF, Castro BG, Guerra A (1996) Predatory relationships of two sympatric squid Todaropsis eblanae and Illex coindetii (Cephalopoda: Ommastrephidae) in Galician waters. J Mar Biol Assoc UK 76:73–87

    Article  Google Scholar 

  • Rodhouse PG, Nigmatullin ChM (1996) Role as consumers. Philos Trans R Soc Lond B Biol Sci 351:1003–1022. https://doi.org/10.1098/rstb.1996.0090

    Article  Google Scholar 

  • Rosas-Luis R, Navarro J, Loor-Andrade P, Forero MG (2017) Feeding ecology and trophic relationships of pelagic sharks and billfishes coexisting in the central eastern Pacific Ocean. Mar Ecol Prog Ser 573:191–201

    Article  Google Scholar 

  • Rosas-Luis R, Jiménez-Badillo MDL, Montoliu-Elena L, Morillo-Velarde PS (2019) Food and feeding habits of Octopus insularis in the Veracruz Reef System National Park and confirmation of its presence in the southwest Gulf of Mexico. Mar Ecol 40:e12535. https://doi.org/10.1111/maec.12535

    Article  Google Scholar 

  • Sala E, Sugihara G (2005) Food web theory provides guidelines for marine conservation. In: Belgrano A, Scharler UM, Dunne J, Ulanowicz R (eds) Aquatic food webs: an ecosystem approach. Oxford University Press, New Mexico, pp 170–183

    Chapter  Google Scholar 

  • Serrano-Tadeo M 2019 Ecología trófica del pulpo Octopus hubbsorum Berry, 1953 (cephalopoda: OCtopodidae) de Acapulco Guerrero, México, a partir de análisis de contenido estomacal e isótopos estables. Bachelor Thesis. Universidad Autónoma de Nayarit, Mexico. 84 pp

  • Stouffer DB, Sales-Pardo M, Sirer MI, Bascompte J (2012) Evolutionary conservation of species’ roles in food webs. Science 335:1489–1492

    Article  CAS  Google Scholar 

  • Swanson HK, Lysy M, Power M, Stasko AD, Johnson JD, Reist JD (2015) A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96:318–324

    Article  Google Scholar 

  • Tirasin ME, Jorgensen T (1999) An evaluation of the precision of diet description. Mar Ecol Prog Ser 182:243–252

    Article  Google Scholar 

  • Torrecilla-Batista A (2012) Caracterização do nicho alimentar do polvo Octopus insularis (cephalopoda: octopodidae): da população ao indivíduo (Master Thesis). Universidade Federal do Rio Grande do Norte, Brasil

    Google Scholar 

  • Torrecilla-Batista A, Leite TS (2016) Octopus insularis (Cephalopoda: Octopodidae) on the tropical coast of Brazil: where it lives and what it eats. Braz J Oceanogr 64:353–364

    Article  Google Scholar 

  • Tunnell JW, Barrera N, Beaver CR, Davidson J, Vega JE (2007) Checklist of the Biota Associated with Southern Gulf of Mexico Coral Reefs and Coral Reef Islands. Gulf Base/Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas

  • Vanderklift A, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichments: a meta-analysis. Oecologia 136:169–182

    Article  Google Scholar 

  • Vander-Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC (2015) Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE 10:e0116182

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Tecnológico Nacional de México and the Consejo Nacional de Ciencia y Tecnología for the support through the Cátedras program. RRL thanks the fisherman from the Cooperativa Arrecifes de Antón Lizardo of the Veracruz Reef System National Park for their support in the collection of samples. RRL is an active member of the Laboratorio Nacional de Micro y Nanofluidica (LabMyN- Laboratorios Nacionales 2020-314907).

Funding

Financial support was provided by Tecnológico Nacional de México through the scientific program, project number: u619w8(3376).

Author information

Authors and Affiliations

Authors

Contributions

AUO contributed to analyzed samples and data, wrote the manuscript. AGJG was involved in analyzed data, authored or reviewed drafts of the paper. CAVS contributed to acquired samples in the field, authored or reviewed drafts of the paper. DIAR was involved in analyzed data and authored or reviewed drafts of the paper. RRL contributed to acquired samples in the field, analyzed samples and data, wrote the manuscript, and approved the final draft for publication.

Corresponding author

Correspondence to Rigoberto Rosas-Luis.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Consent to participate

All authors consent to participate in the project and preparation of this manuscript.

Consent for publication

All authors agree with the content and publication of this manuscript.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urrutia-Olvera, A., Jordán-Garza, A.G., Villegas-Sánchez, C.A. et al. Prey contribution to the diet of Octopus insularis (Leite and Haimovici, 2008) using stable isotopes and stomach content analysis in the Western Gulf of Mexico. Aquat Ecol 55, 765–777 (2021). https://doi.org/10.1007/s10452-021-09859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09859-0

Keywords

Navigation