Skip to main content

Advertisement

Log in

Multiscale effects on freshwater fish distribution in a highly disturbed Mediterranean-type basin: community-level and species-level responses

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Fish–habitat relationships are a key element for conservation and management strategies, especially in highly disturbed areas where fish communities are subjected to many human pressures. In this regard, multiscale studies help to improve the knowledge of the spatial components and identify local (e.g. water width) and regional (e.g. elevation) key variables in species distribution. We examined local and regional requirements to study freshwater fish assemblage and occurrence at 216 locations in a highly disturbed basin, the Guadalquivir River Basin (S Spain). Fifteen environmental variables were considered at local scale and twenty at regional level. A total of eighteen species were captured during field sampling. The global prevalence for introduced species was 25%, which can be considered a high value. The most extended introduced species were eastern mosquitofish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus), with around 10% prevalence. Regional and local scales showed different relevance according to the level-study approach (community or species). At the community level, the local, regional and shared components revealed similar influence on the fish assemblage, while at individual species level the local component was the main factor to explain most of fish occurrences. Moreover, variables’ interaction was scarcely selected and almost no introduced species distribution was affected by the interaction of any variable. Our results highlight the poor conservation status of the native fish fauna of the Guadalquivir River Basin as well as the importance of analyzing fish–habitat relationships at different scales and approach. These results provide useful information to assess and design conservation strategies in Mediterranean-type basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan D, Erickson D, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161

    Google Scholar 

  • Angermeier PL, Winston MR (1998) Local vs. Regional influences on local diversity in stream fish communities of Virginia. Ecology 79:911–927

    Google Scholar 

  • Angermeier PL, Winston MR (1999) Characterizing fish community diversity across Virginia landscapes: prerequisite for conservation. Ecol Appl 9:335–349

    Google Scholar 

  • Arias García AM (2010) Macrofauna acuática. In: Ruiz J, Losada MA, Polo MJ, García J (2010) Propuesta metodológica para diagnosticar y pronosticar las consecuencias de las actuaciones humanas en el estuario del Guadalquivir. Informe técnico. Instituto de Ciencias Marinas de Andalucía (CSIC), Grupo de Dinámica de Flujos Ambientales (Centro Andaluz de Medio Ambiente – Universidad de Granada), Grupo de Dinámica Fluvial e Hidrología (Universidad de Córdoba), Grupo Albiotox (Universidad Complutense). Puerto de Sevilla. Sevilla

  • Arunachalam M (2000) Assemblage structure of stream fishes in the Western Ghats (India). Hydrobiologia 430:1–31

    Google Scholar 

  • Barton K (2016) MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn.

  • Beaujean AA (2012) BaylorEdPsych: R package for Baylor University Educational Psychology quantitative courses (Version 0.5) [Computer software]. Waco, TX: Baylor University.

  • Beaumont WRC, Taylor AAL, Lee MJ, Welton JS (2002) Guidelines for electric fishing best practice. Environment Agency R&D Technical Report W2–054/TR.

  • Berbel J, Pedraza V, Giannoccaro G (2013) The trajectory towards basin closure of a European river: Guadalquivir. Int J River Basin Manag 11:111–119

    Google Scholar 

  • Bond NR, Lake PS (2003) Characterizing fish–habitat associations in streams as the first step in ecological restoration. Austral Ecol 28:611–621

    Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Google Scholar 

  • Branco P, Segurado P, Santos JM, Pinheiro P, Ferreira MT (2012) Does longitudinal connectivity loss affect the distribution of freshwater fish? Ecol Eng 48:70–78

    Google Scholar 

  • Carmona JA, Doadrio I, Márquez AL, Real R, Hugueny B, Vargas JM (1999) Distribution patterns of indigenous freshwater fishes in the Tagus River basin, Spain. Environ Biol Fish 54:371–387

    Google Scholar 

  • Carol J, Benejam L, Alcaraz C, Vila-Gispert A, Zamora L, Navarro E, Armengol J, García-Berthou E (2006) The effects of limnological features on fish assemblages of 14 Spanish reservoirs. Ecol Freshw Fish 15:66–77

    Google Scholar 

  • Carpintero M (2015) Characterization of suspended sediments in the Guadalquivir estuary al modeled scale. Dissertation, Universidad de Córdoba

  • Cheng ST, Herricks EE, Tsai WP, Chang FJ (2016) Assessing the natural and anthropogenic influences on basin-wide fish species richness. Sci Total Environ 572:825–836

    CAS  PubMed  Google Scholar 

  • Clavero M, Blanco F, Prenda J (2004) Fish fauna in Iberian Mediterranean river basins: biodiversity, introduced species and damming impacts. Aquat Conserv 14:575–585

    Google Scholar 

  • Clavero M, Garcia-Berthou E (2006) Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecol Appl 16:2313–2324

    PubMed  Google Scholar 

  • Clavero M, Hermoso V, Levin N, Kark S (2010) Geographical linkages between threats and imperilment in freshwater fish in the Mediterranean Basin. Divers Distrib 16:744–754

    Google Scholar 

  • Clavero M, Hermoso V, Aparicio E, Godinho FN (2013) Biodiversity in heavily modified waterbodies: native and introduced fish in Iberian reservoirs. Freshwater Biol 58:1190–1201

    Google Scholar 

  • Corbacho C, Sánchez JM (2001) Patterns of species richness and introduced species in native freshwater fish faunas of a Mediterranean-type basin: the Guadiana River (southwest Iberian Peninsula). River Res Appl 17:699–707

    Google Scholar 

  • Doadrio I (2001) Atlas y libro rojo de los peces continentales de España. Dirección General de Conservación de la Naturaleza-Museo Nacional de Ciencias Naturales, Madrid

    Google Scholar 

  • Ferreira MT, Sousa L, Santos JM, Reino L, Oliveira J, Almeida PR, Cortes RV (2007) Regional and local environmental correlates of native Iberian fish fauna. Ecol Freshw Fish 16:504–514

    Google Scholar 

  • Feld CK, Segurado P, Gutiérrez-Cánovas C (2016) Analysing the impact of multiple stressors in aquatic biomonitoring data: A ‘cookbook’with applications in R. Sci Total Environ 573:1320–1339

    CAS  PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Filipe AF, Marques TA, Tiago P, Ribeiro F, Da Costa LM, Cowx IG, Collares-Pereira MJ (2004) Selection of priority areas for fish conservation in Guadiana River Basin, Iberian Peninsula. Conserv Biol 18:189–200

    Google Scholar 

  • Fischer JR, Quist MC (2014) Characterizing lentic freshwater fish assemblages using multiple sampling methods. Environ Monit Assess 186:4461–4474

    CAS  PubMed  Google Scholar 

  • García-Alix A, Jiménez-Espejo FJ, Lozano JA, Jiménez-Moreno G, Martínez-Ruiz F, Sanjuán LG et al (2013) Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia. Sci Total Environ 449:451–460

    PubMed  Google Scholar 

  • Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, New York

    Google Scholar 

  • Godinho FN, Ferreira MT (2000) Composition of endemic fish assemblages in relation to exotic species and river regulation in a temperate stream. Biol Invasions 2:231–244

    Google Scholar 

  • Granado-Lorencio C, Hernando JA (2001) Espinoso - Gasterosteus gymnurus. In: Franco A, Rodríguez M (Coord) Libro rojo de los vertebrados de Andalucía. Consejería de Medio Ambiente. Junta de Andalucía

  • Grenouillet G, Pont D, Hérissé C (2004) Within-basin fish assemblage structure: the relative influence of habitat versus stream spatial position on local species richness. Ca J Fish Aquat Sci 61:93–102

    Google Scholar 

  • Growns IO, Pollard DA, Harris JH (1996) A comparison of electric fishing and gillnetting to examine the effects of anthropogenic disturbance on riverine fish communities. Fish Manage Ecol 3:13–24

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Hawkes H (1975) River zonation and classification. In: Whitton BA (ed) River ecology. University of California Press, Berkeley

    Google Scholar 

  • Hermosín MC, Calderón MJ, Real M, Cornejo J (2013) Impact of herbicides used in olive groves on waters of the Guadalquivir river basin (southern Spain). Agri Ecosyst Environ 164:229–243

    Google Scholar 

  • Hermoso V, Clavero M (2011) Threatening processes and conservation management of endemic freshwater fish in the Mediterranean basin: a review. Mar Freshw Res 62:244–254

    CAS  Google Scholar 

  • Hermoso V, Linke S, Prenda J (2009) Identifying priority sites for the conservation of freshwater fish biodiversity in a Mediterranean basin with a high degree of threatened endemics. Hydrobiologia 623:127–140

    Google Scholar 

  • Hernando JA (1975) Notas sobre la distribución de los peces fluviales en el suroeste de España. Doñana Acta Vertebrata 2:263–264

    Google Scholar 

  • Hornung M, Reynolds B (1995) The effect of natural and anthropogenic environmental changes on ecosystem processes at the basin scale. Trends Ecol Evol 10:443–449

    CAS  PubMed  Google Scholar 

  • Hosmer DW Jr, Lemeshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Google Scholar 

  • Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS (2010) High-dimensional variable selection for survival data. J Am Stat Assoc 105:205–217

    CAS  Google Scholar 

  • IUCN Red List of Threatened Species. Version 2015.2. www.iucnredlist.org. Accessed 07 July 2015

  • Kennard MJ, Olden JD, Arthington AH, Pusey BJ, Poff NL (2007) Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia. Can J Fish Aquat Sci 64:1346–1359

    Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin

    Google Scholar 

  • Lamouroux N, Capra H, Pouilly M, Souchon Y (1999) Fish habitat preferences in large streams of southern France. Freshw Biol 42:673–687

    Google Scholar 

  • Larios-López JE, Tierno de Figueroa JM, Alonso-Gonzáles C, Nebot Sanz B (2015) Distribution of brown trout (Salmo trutta Linnaeus, 1758) (Teleostei: Salmonidae) in its southwesternmost European limit: possible causes. Ital J Zool 82:404–415. https://doi.org/10.1080/11250003.2015.1018351

    Article  Google Scholar 

  • Lepart J, Debussche M (1992) In Landscape boundaries., Springer, New York, NY

  • Magalhães MF, Batalha DC, Collares-Pereira MJ (2002) Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biol 47:1015–1031

    Google Scholar 

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Chapman and Hall, New York

    Google Scholar 

  • McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Google Scholar 

  • Molle F, Wester P, Hirsch P (2010) River basin closure: processes, implications and responses. Agric Water Manag 97:569–577

    Google Scholar 

  • Montgomery DR (1999) Process domains and the River Continuum 1. J Am Water Resour As 35:397–410

    Google Scholar 

  • Morán-López R, da Silva RE, Pérez-Bote JL, Corbacho Amado C (2006) Associations between fish assemblages and environmental factors for Mediterranean-type rivers during summer. J Fish Biol 69:1552–1569

    Google Scholar 

  • Navarro G, Huertas IE, Costas E, Flecha S, Díez-Minguito M, Caballero I, López-Rodas V, Prieto L, Ruiz J (2012) Use of a real-time remote monitoring network (RTRM) to characterize the Guadalquivir estuary (Spain). Sensors 12:1398–1421

    CAS  PubMed  Google Scholar 

  • Oliveira JM, Segurado P, Santos JM, Teixeira A, Ferreira MT et al (2012) Modelling stream-fish functional traits in reference conditions: regional and local environmental correlates. PLoS ONE 7:e45787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409

    Google Scholar 

  • Potyó I, Guti G (2012) Requirements for representative sampling for fluvial fish assemblages–literary review. Opuscula Zool 43:203–209

    Google Scholar 

  • Prenda J, Clavero M, Blanco-Garrido F, Menor A, Hermoso V (2006) Threats to the conservation of biotic integrity in Iberian fluvial ecosystems. Limnetica 25:377–388

    Google Scholar 

  • R Core Team (2015) R A Language and Environment for Statistical Computing. R Found. Stat. Comput, Vienna Austria ISBN 3–900051–07–0 https://r-project.org/

  • Ramos-Merchante A, Prenda J (2018) The ecological and conservation status of the Guadalquivir River Basin (s Spain) through the application of a fish-based multimetric index. Ecol Indic 84:45–59

    Google Scholar 

  • Revenga C, Kura Y (2003) Status and trends of biodiversity of inland water ecosystems. Technical series number 11. Montreal, QC: Secretariat of the Convention on Biological Diversity

  • Rodríguez Díaz JA, Weatherhead EK, Knox JW, Camacho E (2007) Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg Environ Change 7:149–159

    Google Scholar 

  • Sáez-Gómez P, Prenda J (2019) Updating the distribution data of recently introduced freshwater fish in the Guadalquivir River Basin (Spain). BioInvas Records 8:924–932

    Google Scholar 

  • Schlosser IJ (1982) Fish community structure and function along two habitat gradients in a headwater stream. Ecol Monogr 52:395–414

    Google Scholar 

  • Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21(20):7881

    Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358

    Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Google Scholar 

  • ter Braak CJF (1987) CANOCO-A fortran program for canonical community ordination by [partial][detrended][canonical] correspondence analysis (version 2.1.). ITI-TNO Institut of Applied Computer Sciences, Wageningen, The Netherlands

  • ter Braak CJ (1990) Update notes: CANOCO, version 3.10, p 35

  • ter Braak CJ, Verdonschot PF (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Google Scholar 

  • ter Braak CJ, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). www.canoco.com.

  • Tonn WM, Magnuson JJ, Rask M, Toivonen J (1990) Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am Nat 136:345–375

    Google Scholar 

  • Troia MJ, Gido KB (2015) Functional strategies drive community assembly of stream fishes along environmental gradients and across spatial scales. Oecologia 177:545–559

    PubMed  Google Scholar 

  • Vila-Gispert A, García-Berthou E, Moreno-Amich R (2002) Fish zonation in a Mediterranean stream: Effects of human disturbances. Aquat Sci Res Across Bound 64:163–170

    Google Scholar 

  • Walsh C, Mac Nally R (2008) hier.part: hierarchical partitioning. R package version 1.0.3. Vienna, Austria: R Foundation for Statistical Computing.

  • Wang L, Lyons J, Kanehl P, Bannerman R (2001) Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environ Manage 28:255–266

    CAS  PubMed  Google Scholar 

  • Wang L, Lyons J, Rasmussen P, Seelbach P, Simon T, Wiley M, Kanehl P, Baker E, Niemela S, Stewart PM (2003) Watershed, reach, and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, USA. Can J Fish Aquat Sci 60:491–505

    Google Scholar 

  • Wang L, Seelbach PW, Lyons J (2006) Effects of levels of human disturbance on the influence of catchment, riparian, and reach-scale factors on fish assemblages. Am Fish Soc Symp 48(48):641–664

    Google Scholar 

  • Yoon JD, Kim JH, Byeon MS, Yang HJ, Park JY, Shim JH, Song HB, Yang H, Jang MH (2011) Distribution patterns of fish communities with respect to environmental gradients in Korean streams. Ann Limnol Int J Limnol 47:S63–S71

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Junta de Andalucía, Convocatoria de Proyectos de Excelencia (P07-RNM-03309), and was carried out at the Centro Internacional de Estudios y Convenciones Ecológicas y Medioambientales (CIECEM) of the University of Huelva. We wish to thank everyone from the CIECEM for their invaluable help and logistic support. We are grateful to Dr. Tano Gutiérrez Cánovas and another anonymous reviewer for the very helpful comments and suggestions that improved an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of the study was carried out by Pedro Sáez-Gómez under the direction of José Prenda and the contributions from Adrián Ramos-Merchante. José Prenda, Adrián Ramos and Pedro Sáez-Gómez processed the data. Adrián Ramos-Merchante performed the statistical analyses with the input from Pedro Sáez-Gómez and José Prenda. The first draft of the manuscript was written by Pedro Sáez-Gómez, and all authors commented on previous versions of the manuscript. All authors reviewed the manuscript and gave their final approval for publication.

Corresponding author

Correspondence to J. Prenda.

Ethics declarations

Conflict of interest

The authors declare no competing interests of financial or non-financial nature.

Human and animal rights

The authors declare that all procedures have been approved by the Andalusian Authority for Wildlife Protection. This study was carried out in accordance with national and international guidelines for care and use of animals.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáez-Gómez, P., Ramos-Merchante, A. & Prenda, J. Multiscale effects on freshwater fish distribution in a highly disturbed Mediterranean-type basin: community-level and species-level responses. Aquat Ecol 54, 869–887 (2020). https://doi.org/10.1007/s10452-020-09783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-020-09783-9

Keywords

Navigation