Skip to main content

Advertisement

Log in

Cyanobacteria and cyanotoxins in estuarine water and sediment

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

While transfer of freshwater cyanobacteria to estuaries has been observed worldwide, the associated transfer of cyanotoxins is less often reported, in particular the sediment contribution. During fall 2018, we monitored the co-occurrence of cyanobacteria and microcystin (MC) in both the water column and in surface sediments at five stations along a river continuum, from a freshwater reservoir to the coastal area in Brittany, France. Cyanobacteria dominated the phytoplankton community in the water column with high densities at the freshwater sites. Microcystis cells and intracellular MC transfer to estuarine and marine sites were observed with decreasing concentrations in accordance with flow dilution. Extracellular MC showed the opposite trend and increased from upstream to downstream in accordance with the lysing of the cells at elevated salinities. Surface sediment samples contained high densities of colonial Microcystis in freshwater and with decreasing concentrations along the salinity gradient, similar to cells concentrations in the water column. Intracellular MC was detected in sediment at all sites except at the marine outlet suggesting the survival of intact cells. Extracellular MC concentrations in sediment were up to five times higher than intracellular concentrations suggesting incomplete MC degradation. mcyB genes were present at all sites, while mcyA genes were absent at the marine outlet suggesting the presence of toxic strains along the estuary. The high densities of intact colonies of potentially toxic Microcystis in the estuarine sediment strongly suggest that sediments can act as an inoculum of cyanobacteria and cyanotoxins in estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anon (2005) Anonyme ISO 20179:2005(E). Water quality—Determination of microcystins—Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. International Standard ISO 20179, first edition 2005-10-01, 17

  • Bormans M, Amzil Z, Mineaud E, Brient L, Savar V, Robert E, Lance E (2019) Demonstrated transfer of cyanobacteria and cyanotoxins along a freshwater-marine continuum in France. Harmful Algae 87:101639

    Article  CAS  PubMed  Google Scholar 

  • Bourrelly P (1985) Les algues d’eau douce: les algues bleues et rouges, vol 3. Lubrecht & Cramer Ltd, New York

    Google Scholar 

  • Briand E, Escoffier N, Straub C, Sabart M, Quiblier C (2009) Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J 3:419–429

    Article  CAS  PubMed  Google Scholar 

  • Briand E, Bormans M, Quiblier C, Salençon MJ, Humbert JF (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS ONE 7(1):e29981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brient L, Lengronne M, Bertrand E, Rolland D, Sipel A, Steinmann D, Baudin I, Legeas M, Le Rouzic N, Bormans M (2008) A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. J Environ Monit 10:248–255

    Article  CAS  PubMed  Google Scholar 

  • Brient L, Lengronne M, Bormans M, Fastner J (2009) First occurrence of cylindrospermopsin in freshwater in France. Environ Toxicol 24(4):415–420

    Article  CAS  PubMed  Google Scholar 

  • Bukaveckas PA, Lesutiene J, Gaisunaite ZR, Lozys L, Olenina I, Pilkaityte R, Putys Z, Tassone S, Wood J (2017) Microcystin in aquatic food webs of the Baltic and Chesapeake Bay regions. Estuar Coast Shelf Sci 191:50–59

    Article  Google Scholar 

  • Bukaveckas PA, Franklin R, Tassone S, Trache B, Egerton T (2018) Cyanobacteria and cyanotoxins at the river-estuarine transition. Harmful Algae 76:11–21

    Article  CAS  PubMed  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407

    Article  CAS  PubMed  Google Scholar 

  • Cires S, Wörmer L, Agha R, Quesada A (2013) Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. J Plankton Res 35(6):1254–1266

    Article  CAS  Google Scholar 

  • Conley DJ (1997) Contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42(4):774–777

    Article  CAS  Google Scholar 

  • De Pace R, Vita V, Bucci MS, Gallo P, Bruno M (2014) Microcystin contamination in sea mussel farms from the Italian southern Adriatic coast following cyanobacterial blooms in the artificial reservoir. J. Ecosyst. https://doi.org/10.1155/2014/374027

    Article  Google Scholar 

  • Devlin JP, Edwards OE, Gorham PR, Hunter NR, Pike RK, Stavric B (1977) Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can J Chem 55(8):1367–1371

    Article  CAS  Google Scholar 

  • Dörr FA, Pinto E, Soares RM, Azevedo SMFO (2010) Microcystins in South American aquatic ecosystems: occurrence, toxicity and toxicological assays. Toxicon 56:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Evans RD (1994) Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia 284:5–12

    Article  Google Scholar 

  • Folger D (1972) Characteristics of estuarine sediments of the United States USGS report 2482

  • Fraisse S, Bormans M, Lagadeuc Y (2013) Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasted flow regime. Aquat Ecol 47:315–327. https://doi.org/10.1007/s10452-013-9446-z

    Article  Google Scholar 

  • Georges des Aulnois M, Roux P, Caruana A, Réveillon D, Briand E, Hervé F, Savar V, Bormans M, Amzil Z (2019) Physiological and metabolic responses of freshwater and brackish waters strains of Microcystis aeruginosa acclimated to a salinity gradient: insight into salt tolerance. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01614-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibble CM, Peacock MB, Kudela RM (2016) Evidence of freshwater algal toxins in marine shellfish: implications for human and aquatic health. Harmful Algae 59:59–66

    Article  CAS  PubMed  Google Scholar 

  • Graham JL, Loftin KA, Meyer MT, Ziegler AC (2006) Co-occurrence of Toxins and Taste-and-Odor Compounds in Cyanobacterial Blooms from the Midwestern United States. Environ Sci Technol 44:7361–7368

    Article  CAS  Google Scholar 

  • Grutzmacher G, Wessel G, Klitzke S, Chorus I (2010) Microcystin elimination during sediment contact. Environ Sci Technol 44:657–662

    Article  PubMed  CAS  Google Scholar 

  • Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54:4–20

    Article  PubMed  Google Scholar 

  • Henriksen A, Selmer-Olsen AR (1970) Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95:514–518

    Article  CAS  Google Scholar 

  • Komárek J (2016) Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. Hydrobiologia 764(1):259–270

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Süßwasserflora von Mitteleuropa, bd. 19/2: Cyanoprokaryota: Oscillatoriales, vol 19. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Komárek J, Anagnostidis K (2013) Süßwasserflora von Mitteleuropa, bd. 19/2: Cyanoprokaryota: Heterocytous Genera, vol 19/3. Spektrum Akademischer Verlag, Heidelberg

    Book  Google Scholar 

  • Kravchuk ES, Ivanova EA, Gladyshev MI (2011) Spatial distribution of resting stages (akinetes) of the cyanobacteria Anabaena flos-aquae in sediments and its influence on pelagic populations. Mar Fresh Res 62:450–461

    Article  CAS  Google Scholar 

  • Kruk C, Segura AM, Nogueira L, Alcántara I, Calliaria D, Martínez de la Escalerad G, Carballoa C, Cabreraa C, Sarthoua F, Scavone P, Piccini C (2017) A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean. Harmful Algae 70:23–36

    Article  PubMed  Google Scholar 

  • Labry C, Delmas D, Youenou A, Quere J, Leynaert A, Fraisse S, Raimonet M, Ragueneau O (2016) High alkaline phosphatase activity in phosphate replete waters: the case of two macrotidal estuaries. Limnol Oceanogr 61:1513–1529

    Article  CAS  Google Scholar 

  • Lance E, Brient L, Carpentier A, Acou A, Marion L, Bormans M, Gérard C (2010) Impact of toxic cyanobacteria on gastropods and microcystin accumulation in a eutrophic lake (Grand-Lieu, France) with special reference to Physa (= Physella) acuta. Sci Total Environ 408:3560–3568

    Article  CAS  PubMed  Google Scholar 

  • Le Moal M, Gascuel-Odoux C, Menesquen A, Souchon Y, Etrillard C, Levain A, Moatar F, Pannard A, Souchu P, Lefebvre A, Pinay G (2019) Eutrophication: a new wine in an old bottle? Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.09.139

    Article  PubMed  Google Scholar 

  • Legrand B, Lamarque A, Sabart M, Deltour D (2016) Characterization of akinetes from cyanobacterial strains and lake sediment: a study of their resistance and toxic potential. Harmful Algae 59:42–50

    Article  CAS  PubMed  Google Scholar 

  • Legrand B, Le Jeune AH, Colombet J, Thouvenot A, Latour D (2017) Akinetes may be representative of past nostocalean blooms: a case study of their benthic spatiotemporal distribution and potential for germination in a eutrophic lake. Appl Environ Microbiol 83:e01571–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman PW, Boyer G, Hall C, Waller S, Gehrts K (2005) Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 541:87–99

    Article  CAS  Google Scholar 

  • Maavara T, Dürr HH, Van Cappellen P (2014) Worldwide retention of nutrient silicon by river damming: from sparse data set to global estimate. Glob Biogeochem Cycles 28:842–855. https://doi.org/10.1002/2014GB004875

    Article  CAS  Google Scholar 

  • Martínez de la Escalera G, Kruk C, Segurad AM, Nogueira L, Alcántara I, Piccini C (2017) Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. Harmful Algae 62:73–83

    Article  PubMed  CAS  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurés E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    Article  CAS  PubMed  Google Scholar 

  • Meriluoto J, Blaha L, Bojadzija G, Bormans M, Brient L, Codd GA, Drobac D, Faassen EJ, Fastner J, Hiskia A, Ibelings BW, Kaloudis T, Kokocinski M, Kurmayer R, Pantelić D, Quesada A, Salmaso N, Tokodi N, Triantis TM, Visser PM, Svirčev Z (2017) Toxic cyanobacteria and cyanotoxins in European waters—recent progress achieved through the CYANOCOST Action and challenges for further research. Adv Oceanogr Limnol. https://doi.org/10.4081/aiol.2017.6429

    Article  Google Scholar 

  • Misson B, Sabart M, Amblard C, Latour D (2011) Involvement of microcystins and colony size in the benthic recruitment of the cyanobacterium Microcystis (Cyanophyceae). J Phycol 47:42–51

    Article  PubMed  Google Scholar 

  • Misson B, Sabart M, Amblard C, Latour D (2012) Benthic survival of Microcystis: long-term viability and ability to transcribe microcystin genes. Harmful Algae 13:20–25

    Article  CAS  Google Scholar 

  • Ndlela LL, Oberholster PJ, Van Wyk JH, Cheng PH (2016) An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. Harmful Algae 60:11–26

    Article  CAS  PubMed  Google Scholar 

  • Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16SrRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  CAS  Google Scholar 

  • Omidi A, Esterhuizen-Londt M, Pflugmacher S (2018) Still challenging: the ecological function of the cyanobacterial toxin microcystin—What we know so far. Toxin Rev 37(2):87–105

    Article  CAS  Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614

    Article  CAS  Google Scholar 

  • Orr PT, Jones GJ, Douglas GB (2004) Response of cultured Microcystis aeruginosa from the Swan River, Australia, to elevated salt concentration and consequences for bloom and toxin management in estuaries. Mar Freshw Res 55(3):277–283

    Article  Google Scholar 

  • Ortiz et al (2017) A high throughput targeted and non-targeted method for the analysis of microcystins and anatoxin-A using on-line solid phase extraction coupled to liquid chromatography–quadrupole time-of-flight high resolution mass spectrometry. Anal Bioanal Chem 409(21):4959

    Article  CAS  PubMed  Google Scholar 

  • Otten TG, Crosswell JR, Mackey S, Dreher TW (2015) Application of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300 km of the Klamath River. Harmful Algae 46:71–81

    Article  Google Scholar 

  • Paerl HW (2018) Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins 10:76. https://doi.org/10.3390/toxins10020076

    Article  CAS  PubMed Central  Google Scholar 

  • Paldavičiene A, Mazur-Marzec H, Razinokovas A (2009) Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon. Oceanologia 51(2):203–216

    Article  Google Scholar 

  • Paldavičiene A, Zaiko A, Mazur-Marzec H, Razinokovas-Baziukas A (2015) Bioaccumulation of microcystins in invasive bivalves: a case study from the boreal lagoon ecosystem. Oceanologia 57:93–101

    Article  Google Scholar 

  • Pannard A, Guislain A, Chorin M, Mahé S, Bouger G, Crave A, Le Rouzic B, Bormans M (2018) Phosphorus more than temperature controls the phytoplankton community in a deep quarry lake: a combined field and laboratory approach. Inland Waters. https://doi.org/10.1080/20442041.2018.1424097

    Article  Google Scholar 

  • Peacock MB, Gibble CM, Senn DB, Cloern JE, Kudela RM (2018) Blurred lines: multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California. Harmful Algae 73:138–147

    Article  CAS  PubMed  Google Scholar 

  • Pham TL, Utsumi M (2018) An overview of the accumulation of microcystins in aquatic ecosystems. J Environ Manag 213:520–529

    Article  CAS  Google Scholar 

  • Pitois F, Thoraval I, Baurès E, Thomas O (2014) Geographical patterns in cyanobacteria distribution: climate influence at regional scale. Toxins 6:509–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pitois F, Fastner J, Pagotto C, Dechesne M (2018) Multi-Toxin occurrences in ten french water resource reservoirs. Toxins 10:283

    Article  PubMed Central  CAS  Google Scholar 

  • Preece EP, Moore BC, Hardy FJ (2015) Ecotoxicology and Environmental Safety Transfer of microcystin from freshwater lakes to Puget Sound, WA and toxin accumulation in marine mussels (Mytilus trossulus). Ecotoxicol Environ Saf 122:98–105

    Article  CAS  PubMed  Google Scholar 

  • Preece EP, Hardy FJ, Moore BC, Bryan M (2017) A review of microcystin detections in Estuarine and Marine waters: environmental implications and human health risk. Harmful Algae 61:31–45

    Article  CAS  Google Scholar 

  • Puddick J, Prinsep MR, Wood SA, Kaufononga SAF, Cary SC, Hamilton DP (2014) High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar Drugs 12:5372–5395. https://doi.org/10.3390/md12115372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds CS (2006) Ecology of Phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59(1):99–114

    Article  Google Scholar 

  • Robson BJ, Hamilton DP (2003) Summer flow event induces a cyanobacterial bloom in a seasonal western Australia estuary. Mar Freshw Res 54:139–151

    Article  Google Scholar 

  • Sabart M, Crenn K, Perrière F, Abila A, Leremboure M, Colombet J, Latour D (2015) Co-occurrence of microcystin and anatoxin-a in the freshwater lake Aydat (France): analytical and molecular approaches during a three-year survey. Harmful Algae 48:12–20

    Article  CAS  PubMed  Google Scholar 

  • Taş S, Okus E, Aslan-Yilmaz A (2006) The blooms of a cyanobacterium, Microcystis cf. aeruginosa in a severely polluted estuary, the Golden Horn, Turkey. Estuar Coast Shelf Sci 68:593–599

    Article  Google Scholar 

  • Tatters AO, Howard MDA, Nagoda C, Busse L, Gellene AG, Caron DA (2017) Multiple stressors at the land-sea interface: cyanotoxins at the land-sea interface in the Southern California Bight. Toxins. https://doi.org/10.3390/toxins9030095

    Article  PubMed  PubMed Central  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide polyketide synthetase system. Chem Biol 7:753–764

    Article  CAS  PubMed  Google Scholar 

  • Tonk L, Bosch K, Visser PM, Huisman J (2007) Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat Microb Ecol 46:117–123

    Article  Google Scholar 

  • Umehara A, Tsutsumi H, Takahashi T (2012) Blooming of Microcystis aeruginosa in the reservoir of the reclaimed land and discharge of microcystins to Isahaya Bay (Japan). Environ Sci Pollut Res 19:3257–3267

    Article  Google Scholar 

  • Umehara A, Komorita T, Tai A, Takahashi T, Orita R, Tsutsumi H (2015) Short-term dynamics of cyanobacterial toxins (microcystins) following a discharge from a coastal reservoir in Isahaya Bay, Japan. Mar Pollut Bulletin 92:73–79

    Article  CAS  Google Scholar 

  • Umehara A, Takahashi T, Komorita T, Orita R, Choi JW, Takenaka R, Mabuchi R, Park HD, Tsutsumi H (2017) Widespread dispersal and bio-accumulation of toxic microcystins in benthic marine ecosystems. Chemosphere 167:492–500

    Article  CAS  PubMed  Google Scholar 

  • Verspagen JMH, Snelder EOFM, Visser PM, Jöhnk KD, Ibelings BW, Mur LR, Huisman J (2005) Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshw Biol 50:854–867. https://doi.org/10.1111/j.1365-2427.2005.01368.x

    Article  Google Scholar 

  • Verspagen JMH, Passarge J, Jöhnk KD, Visser PM, Peperzak L, Boers P, Laanbroek HJ, Huisman J (2006) Water management strategies against toxic Microcystis blooms in the Dutch delta. Ecol Appl 16:313–327

    Article  PubMed  Google Scholar 

  • Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salkinoja-Salonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microb Ecol 35:126–135

    Article  CAS  PubMed  Google Scholar 

  • Viaggiu E, Melchiorre S, Volpi F, Di Corcia A, Mancini R, Garibaldi L, Bruno M (2004) Anatoxin-a toxin in the cyanobacterium Planktothrix rubescens from a fishing pond in northern Italy. Environ Toxicol Int J 19(3):191–197

    Article  CAS  Google Scholar 

  • Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27(5):592–602

    Article  CAS  PubMed  Google Scholar 

  • Wood R (2016) Acute animal and human poisonings from cyanotoxin exposure—a review of the literature. Environ Int 91:276–282

    Article  CAS  PubMed  Google Scholar 

  • Wood SA, Rueckert A, Hamilton DP, Cary SC, Dietrich DR (2011) Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Env. Microbiol Report 3(1):118–124

    Article  CAS  Google Scholar 

  • Xiao M, Li M, Reynolds CS (2018) Colony formation in the cyanobacterium Microcystis. Biol Rev 93:1399–1420

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Maxime Georges des Aulnois for help with field work, Marion Chorin for nutrient analyses, and Gorenka Bojadzija Savic for finalization of the figures. Microscopy and biochemical analyses were performed at the Experimental Ecology (ECOLEX) and the Analytical (PLAY) platforms of the UMR Ecobio. The physico-chemical characteristics of the sediments were analyzed by the SARM laboratory of the CRPG-CNRS in Nancy, France. This project was financially supported by the ANSES (Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail) under the Bieautox project EST-2015-191. The helpful suggestions from the reviewers are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Bormans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bormans, M., Savar, V., Legrand, B. et al. Cyanobacteria and cyanotoxins in estuarine water and sediment. Aquat Ecol 54, 625–640 (2020). https://doi.org/10.1007/s10452-020-09764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-020-09764-y

Keywords

Navigation