Skip to main content

Advertisement

Log in

Food web structure of a subtropical coastal lagoon

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The food webs of a coastal lagoon ecosystem in the southeastern Gulf of California were investigated through the use of stomach contents analyses and carbon (δ13C) and nitrogen (δ15N) stable isotopes of fish and macroinvertebrates. Food sources and species representative of primary producers and primary-to-tertiary consumers were examined. Macroinvertebrates (47.5%) and fish (45%) assemblages represented over 90% of the total biomass. The most representative groups were fish (45%), crustaceans (24%), mollusks (16%), and echinoderms (8.5%). Based on the results from stomach content analysis, stable isotope analysis, and mixing models using Bayesian statistics, the estuarine food web was reconstructed from food chain bases to tertiary consumers, including the most representative species in the ecosystem. Four food webs were identified according to the primary producers, and five trophic levels were identified. However, in the higher trophic levels, these food webs are indistinguishable due to the high degree of omnivory and the complexity of the system which allows the predation in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertini-Berhaut J (1974) Biologie des stades juveniles de teleosteens Mugilidae Mugil auratus Risso 1810, Mugil capito Cuvier 1829 et Mugil saliens Risso 1810. Aquaculture 4:13–27

    Article  Google Scholar 

  • Amezcua F, Amezcua-Linares F (2014) Seasonal changes of fish assemblages in a subtropical lagoon in the SE Gulf of California. Sci World J 2014:16–19

    Article  Google Scholar 

  • Amezcua F, Madrid-Vera J, Aguirre-Villaseñor H (2006) Effect of the artisanal shrimp fishery on the ichthyofauna in the coastal lagoon of Santa María la Reforma, southeastern Gulf of California. Ciencias Mar [Cienc Mar] 32:97–109

    Article  Google Scholar 

  • Amezcua F, Muro-Torres V, Soto-Jiménez MF (2015) Stable isotope analysis versus TROPH: a comparison of methods for estimating fish trophic positions in a subtropical estuarine system. Aquat Ecol 49:235–250. https://doi.org/10.1007/s10452-015-9517-4

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PRIMER+ for PERMANOVA: guide to software and statistical methods. 214. Primer-e, Plymouth

  • Baker R, Buckland A, Sheaves M (2014) Fish gut content analysis: robust measures of diet composition. Fish Fish 15:170–177

    Article  Google Scholar 

  • Bodin N, Le Loc’h F, Hily C (2007) Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. J Exp Mar Biol Ecol 341:168–175

    Article  CAS  Google Scholar 

  • Choy EJ, An S, Kang CK (2008) Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estuar Coast Shelf Sci 78:215–226. https://doi.org/10.1016/j.ecss.2007.11.024

    Article  Google Scholar 

  • Choy EJ, Richard P, Kim KR, Kang CK (2009) Quantifying the trophic base for benthic secondary production in the Nakdong River estuary of Korea using stable C and N isotopes. J Exp Mar Biol Ecol 382:18–26. https://doi.org/10.1016/j.jembe.2009.10.002

    Article  CAS  Google Scholar 

  • Christensen V, Pauly D (1992) ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169–185

    Article  Google Scholar 

  • Costanza R, Arge R, De Groot R et al (1997) The value of the world’ s ecosystem services and natural capital by. Nature 387:253–260. https://doi.org/10.1016/j.ijrobp.2010.07.1349

    Article  CAS  Google Scholar 

  • Coulter GW (1991) Lake Tanganyika and its life, G.W. Coulter (Ed.) with contributions from J.-J. Tiercelin, A. Mondegver, R.E. Hecky and R.H. Spigel, British Museum (Natural History) Publications — Oxford University Press, 1991. 354 pp. Price: £60.00. Aquat Conserv Mar Freshw Ecosyst 1:190–191. https://doi.org/10.1002/aqc.3270010210

  • Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147:31–47

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197(80):261–263

    Article  CAS  PubMed  Google Scholar 

  • Doi H, Matsumasa M, Toya T et al (2005) Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses. Estuar Coast Shelf Sci 64:316–322

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Flores-Verdugo F, González-Farias F, Zaragoza-Araujo U (1993) Ecological parameters of the mangroves of semi-arid regions of Mexico: important for ecosystem management. In: Lieth H, Al Masoom AA (eds) Towards the rational use of high salinity tolerant plants. Springer, pp 123–132

  • Fontugne MR, Jouanneau J-M (1987) Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuar Coast Shelf Sci 24:377–387

    Article  CAS  Google Scholar 

  • Hill BJ, Wassenberg TJ (1993) Why are some prawns found in seagrass? An experimental study of brown (Penaeus esculentus) and grooved (P. semisulcatus) tiger prawns. Mar Freshw Res 44:221–227

    Article  Google Scholar 

  • Kaufman MR, Gradinger RR, Bluhm BA, O’Brien DM (2008) Using stable isotopes to assess carbon and nitrogen turnover in the Arctic sympagic amphipod Onisimus litoralis. Oecologia 158:11–22

    Article  PubMed  Google Scholar 

  • Kline TC, Pauly D (1998) Cross-validation of trophic level estimates from a mass-balance model of Prince William Sound using 15 N/14 N data. In: Alaska Sea Grant College. Citeseer

  • Kwak TJ, Zedler JB (1997) Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110:262–277

    Article  CAS  PubMed  Google Scholar 

  • Langton RW, Watling L (1990) The fish-benthos connection: a definition of prey groups in the Gulf of Maine. In: Trophic relationships in the marine environment: proceedings 24th European marine biology symposium, pp 424–438

  • Ley JA, Montague CL, Mclvor CC (1994) Food habits of mangrove fishes: a comparison along estuarine gradients in northeastern Florida Bay. Bull Mar Sci 54:881–899

    Google Scholar 

  • Little C (2000) The biology of soft shores and estuaries. Oxford University Press, Oxford

    Google Scholar 

  • Livingston RJ (1982) Trophic organization of fishes in a coastal seagrass system. Mar Ecol Prog Ser 7:1–12

    Article  Google Scholar 

  • Marczak LB, Thompson RM, Richardson JS (2007) Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88:140–148

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Moncreiff CA, Sullivan MJ (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 215:93–106. https://doi.org/10.3354/meps215093

    Article  CAS  Google Scholar 

  • Newell RIE, Marshall N, Sasekumar A, Chong VC (1995) Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Mar Biol 123:595–606

    Article  Google Scholar 

  • O’Reilly CM, Hecky RE, Cohen ASC, Plisnier PD (2002) Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnol Oceanogr 47:306–309

    Article  Google Scholar 

  • Páez Osuna F, Ramírez Reséndiz G, Ruiz Fernández AC, Soto Jiménez MF (2007) La contaminación por nitrógeno y fósfoto en Sinaloa: Flujos, fuentes, efectos y opciones de manejo. Universidad Nacional Autónoma de México, Mazatlán

    Google Scholar 

  • Page HM (1997) Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuar Coast Shelf Sci 45:823–834

    Article  Google Scholar 

  • Pasquaud S, Elie P, Jeantet C et al (2008) A preliminary investigation of the fish food web in the Gironde estuary, France, using dietary and stable isotope analyses. Estuar Coast Shelf Sci 78:267–279. https://doi.org/10.1016/j.ecss.2007.12.014

    Article  Google Scholar 

  • Pauly D (2007) The sea around us project: documenting and communicating global fisheries impacts on marine ecosystems. AMBIO J Hum Environ 36:290–295

    Article  Google Scholar 

  • Pauly D, Froese R, Rius M (2000) Trophic pyramids. In: Froese R, Pauly D (eds) FishBase. pp 203–204

  • Pikitch E, Santora C, Babcock EA et al (2004) Ecosystem-based fishery management. Science 305:346–347

    Article  CAS  PubMed  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Polunin NVC, Pinnegar JK (2000) Trophic-level dynamics inferred from stable isotopes of carbon and nitrogen. Fish Down Mediterr Food Webs 12:69–72

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Robertson DR, Allen GR (2006) Shorefishes of the tropical eastern Pacific: an information system: an information system. Panama Smithson Trop Res Insitute, Balboa

    Google Scholar 

  • Roy PS, Williams RJ, Jones AR et al (2001) Structure and function of south-east Australian estuaries. Estuar Coast Shelf Sci 53:351–384. https://doi.org/10.1006/ecss.2001.0796

    Article  Google Scholar 

  • Shephard SA, McComb AJ, Bulthuis DA et al (1989) Decline of seagrasses. Elsevier Science Pub.

  • Siqueiros-Beltrones D, Argumedo-Hernandez U (2006) Identificación de Diatomeas en Contenidos Intestinales de Camarones para ubicar su sitio de captura, un caso jurídico. Conversus 53:22–24

    Article  Google Scholar 

  • Tandel SS, Athalye RP, Gokhale KS (1986) On the seasonal changes in food habit of Mugil cephalus of the Thana Creek. Indian J Fish 33:270–276

    Google Scholar 

  • Thomas SM, Crowther TW (2015) Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J Anim Ecol 84:861–870

    Article  Google Scholar 

  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:32–37

    Article  CAS  PubMed  Google Scholar 

  • Toscano AL, Ochoa DR (2003) Evaluacion/sistematizacion de la experienca del proceso para establecer una Estrategia de Manejo para la Conservacion y desarrollo de bahia Santa Maria. –Un documento sintetiza de los resultados del estudio. Narragansett

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  Google Scholar 

  • Wainright SC, Weinstein MP, Able KW, Currin CA (2000) Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragmites australis to brackish-marsh food webs. Mar Ecol Prog Ser 200:77–91

    Article  CAS  Google Scholar 

  • Wissel B, Fry B (2005) Tracing Mississippi River influences in estuarine food webs of coastal Louisiana. Oecologia 144:659–672

    Article  PubMed  Google Scholar 

  • Worm B, Hilborn R, Baum JK et al (2009) Rebuilding global fisheries. Science 325:578–585. Kapiti Mar Reserv (New Zealand) 89

  • Yokoyama H, Tamaki A, Koyama K et al (2005) Isotopic evidence for phytoplankton as a major food source for macrobenthos on an intertidal sandflat in Ariake Sound, Japan. Mar Ecol Prog Ser 304:101–116. https://doi.org/10.3354/meps304101

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biological statistics. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

A.N. Rojas prepared the samples for isotopic analysis. Financial support was provided by the projects PAPIIT-UNAM IN217408 and IN215206. V. M. Muro-Torres and J. Quintero thank CONACYT for the Ph.D. grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Amezcua.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muro-Torres, V.M., Soto-Jiménez, M.F., Green, L. et al. Food web structure of a subtropical coastal lagoon. Aquat Ecol 53, 407–430 (2019). https://doi.org/10.1007/s10452-019-09698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09698-0

Keywords

Navigation