Skip to main content
Log in

Decline of freshwater gastropods exposed to recurrent interacting stressors implying cyanobacterial proliferations and droughts

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Freshwater biota increasingly undergo multiple stressors, but we poorly understand to what extent they influence the dynamics of community structure. Here, we study the impact of combined stressor exposure on gastropods at 9-year interval, through a monthly 1-year (2013) monitoring, also providing data on the occurrence of other macroinvertebrate taxa. Previous study in 2004 showed the occurrence of cyanobacterial proliferations, drought, trematode parasites and invasive non-native pulmonate Physa acuta. During the year 2013, we always detected cyanobacterial microcystins (MCs) in gastropods, from 59 to 4149 ng g−1 fresh mass (vs. 0–246 ng g−1 in 2004), suggesting a continuous and increased MC intoxication. Environmental intracellular MC concentrations were high (8–41 µg L−1) from August to October 2013, whereas they were detected only in August 2004 (17 µg L−1). In 2013, we recorded no trematodes among the 2490 sampled gastropods, and P. acuta represented 94% of gastropods (vs. 58% in 2004). After August 2013, nearly all gastropods disappeared as most other macroinvertebrates (except Chironomidae, Ephemeroptera and Trichoptera). The whole decline of gastropods and other macroinvertebrates, and the absence of trematodes strongly suggest adverse conditions in the study site. Despite acute stressful conditions suggested above, gastropod abundance was 13-fold higher in June 2013 (vs. 2004), reflecting successful recolonization and efficient breeding. Most gastropods exposed to drought and toxic bloom were young vulnerable stages. Thus, we supposed alternation of local gastropod extinctions versus recolonization that could induce, on a long term, a loss of diversity to the detriment of the most sensitive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acou A, Robinet T, Lance E, Gérard C, Mounaix B, Brient L, Le Rouzic B, Feunteun E (2008) Evidence of silver eels contamination by microcystin-LR at the onset of their seaward migration: what consequences for their breeding potential? J Fish Biol 72:753–762

    Article  Google Scholar 

  • Albrecht C, Kroll O, Moreno Terrazas E, Wilke T (2009) Invasion of ancient Lake Titicaca by the globally invasive Physa acuta (Gastropoda: Pulmonata: Hygrophila). Biol Invasions 11:1821–1826

    Article  Google Scholar 

  • Aldridge DW (1983) Physiological ecology of freshwater prosobranchs. In: Russell-Hunter WD (ed) The Mollusca, vol 6. Academic Press, New York, pp 329–358

    Google Scholar 

  • Alonso A, Camargo JA (2003) Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull Environ Contam Toxicol 70:1006–1012

    Article  CAS  PubMed  Google Scholar 

  • Banha F, Marques M, Anastacio PM (2014) Dispersal of two freshwater invasive macroinvertebrates, Procambarus clarkii and Physella acuta, by off-road vehicles. Aquat Conserv 24:582–591

    Article  Google Scholar 

  • Baudrimont M, de Montaudouin X (2007) Evidence of an altered protective effect of metallothioneins after cadmium exposure in the digenean parasite-infected cockle (Cerastoderma edule). Parasitology 134:237–245

    Article  CAS  Google Scholar 

  • Blakely TJ, Harding JS (2005) Longitudinal patterns in benthic communities in an urban stream under restoration. N Z J Mar Freshw 39:17–28

    Article  Google Scholar 

  • Botana LM (2016) Toxicological perspective on climate change: aquatic toxins. Chem Res Toxicol 29:619–625

    Article  CAS  PubMed  Google Scholar 

  • Bousset L, Pointier JP, David P, Jarne P (2014) Neither variation loss, nor change in selfing rate is associated with the worldwide invasion of Physa acuta from its native North America. Biol Invasions 16:1769–1783

    Article  Google Scholar 

  • Brackenbury TD, Appleton CC (1993) Recolonization of the Umsindusi River, Natal, South Africa, by the invasive gastropod, Physa acuta (Basommatophora, Physidae). J Med Appl Malacol 5:39–44

    Google Scholar 

  • Briand JF, Robillot C, Quiblier-Llobéras C, Bernard C (2002) A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies. Arch Hydrobiol 153:605–622

    Article  CAS  Google Scholar 

  • Buktus R, Šidagytė E, Rakauskas V, Arbačiauskas K (2014) Distribution and current status of non-indigenous mollusc species in Lithuanian inland waters. Aquat Invasions 9:95–103

    Article  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW et al (1997) Parasitology meets ecology on its own terms: Margolis, revisited. J Parasitol 83:575–583

    Article  CAS  PubMed  Google Scholar 

  • Cabuk Y, Arslan N, Yilmaz V (2004) Species composition and seasonal variations of the gastropoda in Upper Sakarya River system (Turkey) in relation to water quality. Acta Hydrochim Hydrobiol 32:393–400

    Article  CAS  Google Scholar 

  • Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water: a guide to public health consequences, monitoring and management, Published on bahalf of UNESCO, WHO and UNEP by E&FN Spon, London

  • Codd GA, Beattie KA, Raggett SL (1997) The evaluation of Envirogard Microcystin plate and tube kits. Environ Agency 47

  • Combes C (1995) Interactions durables. Ecologie et evolution du parasitisme. Editions Masson, Paris

    Google Scholar 

  • Connell JH, Sousa WP (1983) On the evidence needed to judge ecological stability or persistence. Am Nat 121:789–824

    Article  Google Scholar 

  • De Tallarico LF (2016) Freshwater gastropods as a tool for ecotoxicology assessments in Latin America. Am Malacol Bull 33:330–336

    Article  Google Scholar 

  • Dewson ZS, James ABW, Death RG (2007) A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J N Am Benthol Soc 26:401–415

    Article  Google Scholar 

  • Dillon RT (2000) The ecology of freshwater molluscs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dudgeon D (1983) The effects of water fluctuations on a gently shelving marginal zone of Plover Cove Reservoir, Hong Kong. Arch Hydrobiol Suppl 65(2/3):163–196

    Google Scholar 

  • Esch GW, Fernandez JC (1994) Snail-trematode interactions and parasite community dynamics in aquatic systems: a review. Am Midl Nat 131:209–237

    Article  Google Scholar 

  • Fischer BB, Pomati F, Eggen RIL (2013) The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity. Sci Total Environ 449:253–259

    Article  CAS  PubMed  Google Scholar 

  • Gérard C (2000) Dynamics and structure of a benthic macroinvertebrate community in a lake after drought. J Freshw Ecol 15:65–69

    Article  Google Scholar 

  • Gérard C (2001a) Consequences of a drought on freshwater gastropod and trematode communities. Hydrobiologia 459:9–18

    Article  Google Scholar 

  • Gérard C (2001b) Structure and temporal variation on trematode and gastropod communities in a freshwater ecosystem. Parasite 8:275–287

    Article  PubMed  Google Scholar 

  • Gérard C, Poullain V (2005) Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors. Environ Pollut 138:28–33

    Article  CAS  PubMed  Google Scholar 

  • Gérard C, Brient L, Le Rouzic B (2005) Variation in the response of juvenile and adult gastropods (Lymnaea stagnalis) to cyanobacterial toxin (microcystin-LR). Environ Toxicol 20:592–596

    Article  CAS  PubMed  Google Scholar 

  • Gérard C, Carpentier A, Paillisson JM (2008) Long-term dynamics and community structure of freshwater gastropods exposed to parasitism and other environmental stressors. Freshw Biol 53:1–21

    Article  Google Scholar 

  • Gérard C, Poullain V, Lance E, Acou A, Brient L, Carpentier A (2009) Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater molluscs. Environ Pollut 157:609–617

    Article  CAS  PubMed  Google Scholar 

  • Gilroy DJ, Kauffman KW, Hall RA, Huang X, Chu FS (2000) Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. Environ Health Persp 108:435–439

    Article  CAS  Google Scholar 

  • Glöer P, Meier-Brook C (1994) Süsswassermollusken. Deutscher Jugendbund für Naturbeobachtung, Hamburg

    Google Scholar 

  • Gordy MA, Kish L, Tarrabain M, Hanington PC (2016) A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol Res 115:3867–3880

    Article  PubMed  Google Scholar 

  • Habdija I, Latjner J, Belinic I (1995) The contribution of gastropod biomass in microbenthic communities in a karstic river. Int Revue Gesamten Hydrobiol Hydrogr 80:03–110

    Google Scholar 

  • Head RM, Jones RI, Bailey-Watts AE (1999) An assessment of the influence of recruitment from the sediment on the development of plaktonic populations of cyanobacteria in a temperate mesotrophic lake. Freshw Biol 41:759–769

    Article  Google Scholar 

  • Hechinger RF, Lafferty KD, Huspeni TC, Brooks AJ, Kuris AM (2007) Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes. Oecologia 151:82–92

    Article  PubMed  Google Scholar 

  • Heinonen J, Kukkonen JVK, Holopainen IJ (1999) The effects of parasites and temperature on the accumulation of xenobiotics in a freshwater clam. Ecol Appl 9:475–481

    Article  Google Scholar 

  • Höckendorff S, Früh D, Hormel N, Haase P, Stoll S (2015) Biotic interactions under climate warming: temperature-dependent and species-specific effects of the oligochaete Chaetogaster limnaei on snails. Freshw Sci 34:1304–1311

    Article  Google Scholar 

  • Holmstrup M, Bindesbøl AM, Osstingh GJ, Duschl A, Scheil V, Köhler HR, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasite species? TREE 21:381–385

    PubMed  Google Scholar 

  • Huspeni TC, Lafferty KD (2004) Using larval trematodes that parasitize snails to evaluate a salt marsh restoration project. Ecol Appl 14:795–804

    Article  Google Scholar 

  • Kappes H, Hause P (2012) Slow, but steady: dispersal of freshwater mollusks. Aquat Sci 74:1–14

    Article  Google Scholar 

  • Keas BE, Blankespoor HD (1997) The prevalence of cercariae from Stagnicola emarginata (Lymnaeidae) over 50 years in Northern Michigan. J Parasitol 83:536–540

    Article  CAS  PubMed  Google Scholar 

  • King KC, Mac Laughin JD, Gendron AD, Paul BD, Giroux I, Rondeau B, Boily M, Juneau P, Marcogliese DJ (2007) Impacts of agriculture on the parasite communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. Parasitology 134:2063–2080

    Article  CAS  Google Scholar 

  • Kotak BG, Zurawell RW (2007) Cyanobacterial toxins in Canadian freshwaters: a review. Lake Reserv Manag 23:109–122

    Article  Google Scholar 

  • Krzyzanek E, Kasza H, Pajak G (1993) The effect of water blooms caused by blue-green algae on the bottom macrofauna in the Goczalkowice Reservoir (southern Poland) in 1992. Acta Hydrobiol 35:221–230

    Google Scholar 

  • Lagrue C, Poulin R (2016) The scaling of parasite biomass with host biomass in lake ecosystems: are parasites limited by host resources? Ecography 39:507–514

    Article  Google Scholar 

  • Lake PS (2000) Disturbance, patchiness, and diversity in streams. J N Am Benthol Soc 19:573–592

    Article  Google Scholar 

  • Lance E, Brient L, Bormans M, Gérard C (2006) Interactions between Cyanobacteria and Gastropods. I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and kinetics of microcystin bioaccumulation and detoxification. Aquat Toxicol 70:140–148

    Article  CAS  Google Scholar 

  • Lance E, Brient L, Bormans M, Gérard C (2007) Interactions between Cyanobacteria and Gastropods. II. Impact of toxic Planktothrix agardhii on the life-history traits of Lymnaea stagnalis. Aquat Toxicol 81:389–396

    Article  CAS  PubMed  Google Scholar 

  • Lance E, Bugajny E, Bormans M, Gérard C (2008) Consumption of toxic cyanobacteria by Potamopyrgus antipodarum (Gastropoda, Prosobranchia) and consequences on life traits and microcystin accumulation. Harmful Algae 7:464–472

    Article  Google Scholar 

  • Lance E, Brient L, Carpentier A, Acou A, Marion L, Bormans M, Gérard C (2010) Impact of toxic cyanobacteria on gastropods and microcystin accumulation in a eutrophic lake (Grand-Lieu, France) with special reference to Physa (= Physella) acuta. Sci Total Environ 408:3560–3568

    Article  CAS  PubMed  Google Scholar 

  • Lance E, Alonzo F, Tanguy M, Gérard C, Bormans M (2011) Impact of microcystin-producing cyanobacteria on reproductive success of Lymnaea stagnalis (Gastropoda, Pulmonata) and predicted consequences at the population level. Ecotoxicology 20:719–730

    Article  CAS  PubMed  Google Scholar 

  • Lance E, Petit A, Sanchez W, Paty C, Gérard C, Bormans M (2014) Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. Harmful Algae 31:9–17

    Article  CAS  PubMed  Google Scholar 

  • Lemm JU, Feld CK (2017) Identification and interaction of multiple stressors in central European lowland rivers. Sci Total Environ 603–604:148–154

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie K, Williams MH, Williams B, MacVicar AH, Siddall R (1995) Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv Parasitol 35:85–144

    Article  CAS  PubMed  Google Scholar 

  • Mankiewicz-Boczek J, Gągała I, Kokociński M, Jurczak T, Stefaniak K (2011) Perennial toxigenic Planktothrix agardhii bloom in selected lakes of Western Poland. Environ Toxicol 26:10–20

    Article  CAS  PubMed  Google Scholar 

  • Marcogliese DJ (2005) Parasites of the superorganism: are they indicators of ecosystem health? Int J Parasitol 35:705–716

    Article  PubMed  Google Scholar 

  • Marcogliese DJ (2016) The distribution and abundance of parasites in aquatic ecosystems in a changing climate: more than just temperature. Integr Comp Biol 56:611–619

    Article  PubMed  Google Scholar 

  • Marcogliese DJ, Pietrock M (2011) Combined effects of parasites and contaminants on animal health: parasites do matter. Trends Parasitol 27:123–130

    Article  PubMed  Google Scholar 

  • Martiguez L, Buronfosse T, Beisel JN, Giambérini L (2012) Parasitism can be a confounding factor in assessing the response of zebra mussels to water contamination. Environ Pollut 162:234–240

    Article  CAS  Google Scholar 

  • MacMahon RF (1983) Physiological ecology of freshwater pulmonates. In: Russell-Hunter WD (ed) The Mollusca, vol 6. Academic Press, New York, pp 359–430

    Google Scholar 

  • Merlo MJ, Etchegoin JA (2010) Testing temporal stability of the larval digenean community in Heleobia conexa (Mollusca: Cochliopidae) and its possible use as an indicator of environmental fluctuations. Parasitology 138:249–256

    Article  PubMed  Google Scholar 

  • Mitchell DR, Leung TLF (2016) Sharing the load: a survey of parasitism in the invasive freshwater pulmonate, Physa acuta (Hygrophila: Physidae) and sympatric native snail populations. Hydrobiologia 766:165–172

    Article  Google Scholar 

  • Morley NJ (2006) Parasitism as a source of potential distortion in studies on endocrine disrupting chemicals in molluscs. Mar Pollut Bull 52:1330–1332

    Article  CAS  PubMed  Google Scholar 

  • Morley NJ (2010) Interactive effects of infectious diseases and pollution in aquatic molluscs. Aquat Toxicol 96:27–36

    Article  CAS  PubMed  Google Scholar 

  • Morley NJ, Lewis JW (2007) Anthropogenic pressure on a molluscan-trematode community over a long-term period in the Basingstoke Canal, UK, and its implications for ecosystem health. EcoHealth 3:269–280

    Article  Google Scholar 

  • Morley NJ, Irwin SWB, Lewis JW (2003) Pollution toxicity to the transmission of larval digeneans through their molluscan hosts. Parasitology 126:S5–S26

    Article  CAS  PubMed  Google Scholar 

  • Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872

    Article  CAS  PubMed  Google Scholar 

  • Nunes AL, Tricarico E, Panov VE, Cardoso AC, Katsanevakis S (2015) Pathways and gateways of freshwater invasions in Europe. Aquat Invasions 10:359–370

    Article  Google Scholar 

  • Oberholster PJ, Botha AM, Ashton PJ (2009) The influence of a toxic cyanobacterial bloom and water hydrology on algal populations and macroinvertebrate abundance in the upper littoral zone of Lake Krugersdrift, South Africa. Ecotoxicology 18:34–46

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  CAS  PubMed  Google Scholar 

  • Pardo I, García L (2016) Water abstraction in small lowland streams: unforeseen hypoxia and anoxia effects. Sci Total Environ 568:226–235

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Relyea R, Hoverman J (2006) Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol Lett 9:1157–1171

    Article  Google Scholar 

  • Richardson J (1997) Acute ammonia toxicity for eight New Zealand indigenous freshwater species. N Z J Mar Freshw 31:185–190

    Article  CAS  Google Scholar 

  • Schwarz SS, Jenkins DG (2000) Temporary aquatic habitats: constraints and opportunities. Aquat Ecol 34:3–8

    Article  Google Scholar 

  • Skulberg OM, Wayne WW, Codd GA, Skulberg R (1993) Taxonomy of toxic Cyanophyceae (Cyanobacteria). In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic Press Ltd, Cambridge, pp 145–164

    Chapter  Google Scholar 

  • Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55:152–174

    Article  Google Scholar 

  • Strzelec M, Michalik-Kucharz A (2003) The gastropod fauna of an unstabilised dam reservoir in Southern Poland. Malakol Abh 21:43–47

    Google Scholar 

  • Sulmon C, van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C, Gérard C (2015) Abiotic stressors and stress responses: what commonalities appear between species across biological organization levels? Environ Pollut 202:66–77

    Article  CAS  PubMed  Google Scholar 

  • Sumpter JP (2009) Protecting aquatic organisms from chemicals: the harsh realities. Philos Trans R Soc A 367:3877–3894

    Article  CAS  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2006) Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Editions, Paris

    Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  CAS  PubMed  Google Scholar 

  • Turner AM, Montgomery SL (2009) Hydroperiod, predators and the distribution of physid snails across the freshwater habitat gradient. Freshw Biol 54:1189–1201

    Article  CAS  Google Scholar 

  • Van Leeuwen CHA, Huig N, Van Der Velde G, Van Alen TA, Wagemaker CAM, Sherman CDH, Klaassen M, Figuerola J (2013) How did this snail get here? several dispersal vectors inferred for an aquatic invasive species. Freshw Biol 58:88–99

    Article  Google Scholar 

  • Vinebrook RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, Maberly SC, Sommer U (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451–457

    Article  Google Scholar 

  • White SH, Duivenvoorden LJ, Fabbro LD (2005) Impacts of a toxic Microcystis bloom on the macroinvertebrate fauna of Lake Elphinstone, Central Queensland, Australia. Hydrobiologia 548:117–126

    Article  Google Scholar 

  • Żbikowski J, Żbikowska E (2009) Invaders of an invader—trematodes in Potamopyrgus antipodarum in Poland. J Invertebr Pathol 101:67–70

    Article  PubMed  Google Scholar 

  • Zhang D, Xie P, Liu Y, Chen J, Liang G (2007) Bioaccumulation of the hepatotoxic microcystins in various organs of a freshwater snail from a subtropical Chinese lake, Taihu Lake, with dense toxic Microcystis blooms. Environ Toxicol Chem 26:171–176

    Article  CAS  PubMed  Google Scholar 

  • Zukowski S, Walker KF (2009) Freshwater snails in competition: alien Physa acuta (Physidae) and native Glyptophysa gibbosa (Planorbidae) in the River Murray, South Australia. Mar Freshw Res 60:999–1005

    Article  CAS  Google Scholar 

  • Zurawell RW, Kotak BG, Prepas EE (1999) Influence of lake trophic status on the occurrence of microcystin-LR in the tissue of pulmonate snails. Freshw Biol 42:707–718

    Article  CAS  Google Scholar 

  • Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health B 8:1–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Valérie Briand for bibliographical assistance.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors read and approved the paper.

Corresponding author

Correspondence to Claudia Gérard.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, C., Lance, E. Decline of freshwater gastropods exposed to recurrent interacting stressors implying cyanobacterial proliferations and droughts. Aquat Ecol 53, 79–96 (2019). https://doi.org/10.1007/s10452-019-09674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09674-8

Keywords

Navigation