Skip to main content
Log in

18-Crown-6-ether assembly of cesium ion-imprinted polymer enabling efficiently selective separation of cs(I) from aqueous solution

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this study, a cesium ion imprinted polymer (Cs(I)-IIP) was prepared by free radical thermal polymerization using 18-crown-6-ether (18C6) as ligand, methacrylic acid (MAA) as functional monomer, and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent, which can be used for adsorption and separation of cesium ions from low-concentration solutions. The adsorption kinetic and isotherm results showed that the adsorption of Cs+ fitted to the pseudo-second-order kinetic model and Langmuir model, indicating that the adsorption of Cs+ on Cs(I)-IIP was the monolayer chemical adsorption. The maximum adsorption capacity was 84.21 mg·g− 1. The selective adsorption properties are performed in Cs+, Li+, Na+, and K+ multicomponent systems. The results showed that the Cs(I)-IIP has a high selectivity in the presence of coexisting Li+, Na+, and K+, and the selectivity coefficients (K’) of Cs(I)-IIP for Cs+/Li+, Cs+/Na+, Cs+/K+ are 2.1, 1.56, and 1.33, respectively. The high adsorption capacity and selectivity are attributed to the introduction of imprinting technology to form specific Cs+ recognition adsorption sites, and the 18C6 cavity was easier to recognize Cs+ in the competitive adsorption process. Finally, the Cs(I)-IIP can be regenerated and reused for 10 times with the adsorption capacity only decreased by 8.1%, indicating that the polymer has good reuse performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Zhang, X.F., et al.: Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chem. Eng. Processing-Process Intensif. 147, 8 (2020). https://doi.org/10.1016/j.cep.2019.107777

    Article  CAS  Google Scholar 

  2. Guo, H., et al.: Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method. Hydrometallurgy. 183, 9–19 (2019). https://doi.org/10.1016/j.hydromet.2018.10.020

    Article  CAS  Google Scholar 

  3. Hill, T.G., Ensor, D.D., Delmau, L.H., Moyer, B.A.: Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process. Sep. Sci. Technol. 51, 1133–1140 (2016). https://doi.org/10.1080/01496395.2016.1143509

    Article  CAS  Google Scholar 

  4. Chen, W.S., et al.: Recovery of Rubidium and Cesium resources from Brine of Desalination through t-BAMBP extraction. Metals. 10, 15 (2020). https://doi.org/10.3390/met10050607

    Article  CAS  Google Scholar 

  5. Jagasia, P., et al.: Recovery of radio-cesium from actual high level liquid waste using solvents containing calix 4 arene-crown-6 ligands. J. Environ. Chem. Eng. 5, 4134–4140 (2017). https://doi.org/10.1016/j.jece.2017.07.055

    Article  CAS  Google Scholar 

  6. Lee, C.H., Chen, W.S.: Extraction of cesium from aqueous solution through t-SAMBP/C(2)mimNTf(2) and recovery of cesium from waste desalination brine. Desalination Water Treat. 235, 193–199 (2021). https://doi.org/10.5004/dwt.2021.27540

    Article  CAS  Google Scholar 

  7. Ye, Y., Li, K., Zhang, W.C., Liu, C.: Precipitation of cesium lead halide perovskite nanocrystals in glasses based on liquid phase separation. J. Am. Ceram. Soc. 105, 6105–6115 (2022). https://doi.org/10.1111/jace.18547

    Article  CAS  Google Scholar 

  8. Lv, L.M., Chen, C., Hou, H.W., Zhang, X.H., Lan, P.: Structure analysis and cesium adsorption mechanism evaluation of sodium copper ferrocyanide. J. Radioanal. Nucl. Chem. 331, 5835–5842 (2022). https://doi.org/10.1007/s10967-022-08633-2

    Article  CAS  Google Scholar 

  9. Jang, S.C., et al.: Magnetic composites as an effective technology for removal of radioactive cesium. Int. J. Environ. Sci. Technol. 12, 3695–3700 (2015). https://doi.org/10.1007/s13762-015-0853-7

    Article  CAS  Google Scholar 

  10. Dumat, C., Quiquampoix, H., Staunton, S.: Adsorption of cesium by synthetic clay-organic matter complexes: Effect of the nature of organic polymers. Environ. Sci. Technol. 34, 2985–2989 (2000). https://doi.org/10.1021/es990657o

    Article  CAS  Google Scholar 

  11. Pangeni, B., Paudyal, H., Inoue, K., Ohto, K., Kawakita, H.: Preparation of Natural Bio-adsorbent from Green Tea Extract Powder and its application for selective removal of cs(I) from Water. J. Chem. Eng. Jpn. 54, 638–647 (2021). https://doi.org/10.1252/jcej.20we172

    Article  CAS  Google Scholar 

  12. Zhang, A.Y., Xiao, C.L., Xue, W.J., Chai, Z.F.: Chromatographic separation of cesium by a macroporous silica-based supramolecular recognition agent impregnated material. Sep. Purif. Technol. 66, 541–548 (2009). https://doi.org/10.1021/je400735z

    Article  CAS  Google Scholar 

  13. Zhang, J.F., et al.: Kinetics-controlled separation intensification for Cesium and Rubidium isolation from Salt Lake Brine. Ind. Eng. Chem. Res. 57, 4399–4406 (2018). https://doi.org/10.1021/acs.iecr.7b04820

    Article  CAS  Google Scholar 

  14. Patra, K., et al.: Achieving highly efficient and selective cesium extraction using 1,3-di-octyloxycalix 4 arene-crown-6 in n-octanol based solvent system: Experimental and DFT investigation. RSC Adv. 11, 21323–21331 (2021). https://doi.org/10.1039/d1ra02661e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, J.C.: Co-extraction of strontium and cesium from simulated high-level liquid waste (HLLW) by calixcrown and crown ether. J. Nucl. Sci. Technol. 52, 171–177 (2015). https://doi.org/10.1080/00223131.2014.938136

    Article  CAS  Google Scholar 

  16. Zhang, A.Y., Dai, Y., Xu, L., Chai, Z.F.: Solvent extraction of Cesium with a New Compound Calix 4 arene-bis (4-methyl-1,2-phenylene)-crown-6. J. Chem. Eng. Data. 58, 3275–3281 (2013). https://doi.org/10.1016/j.seppur.2009.02.002

    Article  CAS  Google Scholar 

  17. Zhang, K., et al.: Adsorption behavior of cs(I) on natural soils: Batch experiments and model-based quantification of different adsorption sites. Chemosphere. 290, 9 (2022). https://doi.org/10.1016/j.chemosphere.2021.132636

    Article  CAS  Google Scholar 

  18. Chen, R.Z., et al.: Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem. Commun. 25, 23–25 (2012). https://doi.org/10.1016/j.elecom.2012.09.012

    Article  CAS  Google Scholar 

  19. Nisola, G.M., et al.: Covalently decorated crown ethers on magnetic graphene oxides as bi-functional adsorbents with tailorable ion recognition properties for selective metal ion capture in water. Chem. Eng. J. 389, 12 (2020). https://doi.org/10.1016/j.cej.2019.123421

    Article  CAS  Google Scholar 

  20. Bereczki, R., Agai, B., Bitter, I., Toke, L., Toth, K.: Bis(benzo-18-crown-6) derivatives: Synthesis and ion-sensing properties in plasticized PVC membranes. J. Incl. Phenom. Macrocyclic Chem. 45, 45–50 (2003). https://doi.org/10.1023/a:1023095617641

    Article  CAS  Google Scholar 

  21. Chaudhury, S., Bhattacharyya, A., Goswami, A.: Electrodriven Ion Transport through Crown Ether-Nafion Composite membrane: Enhanced selectivity of cs + over na + by Ion Gating at the Surface. Ind. Eng. Chem. Res. 53, 8804–8809 (2014). https://doi.org/10.1021/ie500934v

    Article  CAS  Google Scholar 

  22. Fan, Q.H., Tanaka, M., Tanaka, K., Sakaguchi, A., Takahashi, Y.: An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim. Cosmochim. Acta. 135, 49–65 (2014). https://doi.org/10.1016/j.gca.2014.02.049

    Article  CAS  Google Scholar 

  23. Awual, M.R., et al.: Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem. Eng. J. 242, 127–135 (2014). https://doi.org/10.1016/j.cej.2013.12.072

    Article  CAS  Google Scholar 

  24. Liu, Z., et al.: Experimental and theoretical investigations of cs + adsorption on crown ethers modified magnetic adsorbent. J. Hazard. Mater. 371, 712–720 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  25. Yang, L., Li, S.F., Sun, C.Y.: Selective adsorption and separation of cs(I) from salt lake brine by a novel surface magnetic ion-imprinted polymer. J. Dispers. Sci. Technol. 38, 1547–1555 (2017). https://doi.org/10.1080/01932691.2016.1261361

    Article  CAS  Google Scholar 

  26. Li, X.Z., Sun, Y.P.: Evaluation of ionic imprinted polymers by electrochemical recognition of rare earth ions. Hydrometallurgy. 87, 63–71 (2007). https://doi.org/10.1016/j.hydromet.2007.02.003

    Article  CAS  Google Scholar 

  27. Wang, W.S., et al.: Effective removal of Fe(II) impurity from rare earth solution using surface imprinted polymer. Chem. Eng. Res. Des. 91, 2759–2764 (2013). https://doi.org/10.1016/j.cherd.2013.05.006

    Article  CAS  Google Scholar 

  28. Jing, Z.F., et al.: Selectivity of 18-crown-6 ether to alkali ions by density functional theory and molecular dynamics simulation. J. Mol. Liq. 311, 9 (2020). https://doi.org/10.1016/j.molliq.2020.113305

    Article  CAS  Google Scholar 

  29. Handy, N.C.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors - comment. Mol. Phys. 100, 63–63 (2002). https://doi.org/10.1080/00268970110088893

    Article  Google Scholar 

  30. Zhang, J., Lu, T.: Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 23, 20323–20328 (2021). https://doi.org/10.1039/d1cp02805g

    Article  CAS  PubMed  Google Scholar 

  31. Rajabi, H.R., Shamsipur, M., Pourmortazavi, S.M.: Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K + ion in different water samples. Mater. Sci. Eng. C-Materials Biol. Appl. 33, 3374–3381 (2013). https://doi.org/10.1016/j.msec.2013.04.022

    Article  CAS  Google Scholar 

  32. Wang, J.L., Guo, X.: Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 18 (2020). https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  Google Scholar 

  33. Zhou, L., et al.: Dual ion-imprinted mesoporous silica for selective adsorption of U(VI) and cs(I) through multiple interactions. ACS Appl. Mater. Interfaces. 13, 6322–6330 (2021). https://doi.org/10.1021/acsami.0c21207

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Z.L., Xu, X.H., Yan, Y.S.: Kinetic and thermodynamic analysis of selective adsorption of cs(I) by a novel surface whisker-supported ion-imprinted polymer. Desalination. 263, 97–106 (2010). https://doi.org/10.1016/j.desal.2010.06.044

    Article  CAS  Google Scholar 

  35. Meng, X.G., et al.: Synthesis of novel ion-imprinted polymers by two different RAFT polymerization strategies for the removal of cs(I) from aqueous solutions. RSC Adv. 5, 12517–12529 (2015). https://doi.org/10.1039/c4ra11459k

    Article  CAS  Google Scholar 

  36. Xia, T.T., Yin, L.L., Xie, Y.H., Ji, Y.Q.: Efficiently remove of cs(I) by metals hexacyanoferrate modified magnetic Fe3O4-chitosan nanoparticles. Chem. Phys. Lett. 746, 8 (2020). https://doi.org/10.1016/j.cplett.2020.137293

    Article  CAS  Google Scholar 

  37. Xia, T.T., Wu, H.Y., Yin, L.L., Ji, Y.Q.: Selective removal of cesium by ammonium molybdophosphate-magnetic Fe3O4-chitosan composites. J. Mater. Res. 36, 2926–2935 (2021). https://doi.org/10.1557/s43578-021-00279-2

    Article  CAS  Google Scholar 

  38. He, J.T., et al.: Highly-efficient adsorptive separation of cs + from aqueous solutions by porous polyimide membrane containing Dibenzo-18-Crown-6. Sep. Purif. Technol. 299, 10 (2022). https://doi.org/10.1016/j.seppur.2022.121757

    Article  CAS  Google Scholar 

Download references

Funding

Beijing Natural Science Foundation (2232067), Research Fund of State Key Laboratory of Mesoscience and Engineering (MESO-23-A06).

Author information

Authors and Affiliations

Authors

Contributions

L.M. and J.Q. analyzed the experimental data, discussed the results, and wrote the manuscript. T.W. and Y.G. provided the resources of Cs(I). L.M. conceived the study design. J.Q. and L.G Investigated the experimental section and performed the measurements. L.M. provided funding support. All authors reviewed the manuscript.

Corresponding author

Correspondence to Licheng Ma.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors have no relevant fnancial or on-fnancial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Qi, J., Gao, L. et al. 18-Crown-6-ether assembly of cesium ion-imprinted polymer enabling efficiently selective separation of cs(I) from aqueous solution. Adsorption (2024). https://doi.org/10.1007/s10450-024-00481-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00481-8

Keywords

Navigation