Skip to main content
Log in

Mesoporous carbon xerogel as a promising adsorbent for capture and storage of liquified natural gas vapors

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Capture and storage of LNG vapors in the adsorbed state is envisioned as an effective way to improve the LNG terminal performance. A synthetic carbon xerogel was proposed as a promising adsorbent for methane vapors in the LNG terminal combined with an adsorbed natural gas (ANG) module. The textural properties of the adsorbent were investigated by X-ray diffraction, scanning electron microscopy, and low-temperature nitrogen adsorption. An approach based on the theories of volume filling of micropores, a monolayer capacity on the mesopore surface, and the capillary condensation in the mesopores was applied to the experimental data on methane adsorption to evaluate the adsorption capacity of the adsorbent over the sub- and supercritical P,T-ranges. It was found that the capillary condensation of methane in mesopores ensured an extraordinary adsorption capacity of the adsorbent, achieving 540 m3(NTP)·m−3 at the boiling point. The adsorption- and temperature-induced deformation of the adsorbent, and the thermal effects arising during adsorption were examined with a view of the performance of the LNG terminal combined with the adsorber for capturing and accumulating LNG vapors. The ANG tank loaded with the carbon xerogel ensured the maximum amount of gas supplied to the consumer at temperatures close to 140 K. A comparison of the adsorption performances of the carbon xerogel and a commercial activated carbon characterized by a wider pore size distribution made it possible to identify a difference in the optimal operational conditions of their application for the LNG–ANG technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, I.E. Men’shchikov upon reasonable request.

Abbreviations

ALNG:

Adsorption-based capture of LNG vapors

ANG:

Adsorbed natural gas

ASC:

Activated carbon prepared from silicon carbide

BET:

Brunauer–Emmett–Teller

CX:

Carbon xerogel

CNG:

Compressed natural gas

CLTE:

Coefficient of linear thermal expansion

D-A:

Dubinin–Astakhov equation

D-R:

Dubinin–Radushkevich equation

EDX:

Energy dispersive X-ray

LNG:

Liquified natural gas

MOF:

Metal-organic framework

NG:

Natural gas

NLDFT:

Non-local density functional theory

NTP:

Normal temperature and pressure: 293 K and 101,325 Pa

PSD:

Pore size distribution

STP:

Standard temperature and pressure: 273.15 K and 100,000 Pa

XRD:

X-ray diffraction

A :

Differential molar work of adsorption [kJ·mol1]

a :

Value of adsorption [mmol·g1]

a 0 :

Limiting value of adsorption at a pressure equal to the saturated vapor pressure P0 [mmol·g1]

a K :

Value of adsorption through capillary condensation in mesopores [mmol·g1]

a meso :

Value of adsorption on the surface of the meso- and macropores through the formation of a monolayer [mmol·g1]

a micro :

Value of adsorption in micropores through the micropore volume filling [mmol·g1]

D 0 :

Effective diameter of micropores [nm]

d CX :

Density of the carbon xerogel rod evaluated from its dimensions and weight [kg·m−3]

D meso max :

Pore diameter corresponding to the maximum peak of the PSD functions for mesoporosity [nm]

D micro max :

Pore diameter corresponding to the maximum peak of the PSD functions for microporosity [nm]

E 0 :

Standard characteristic energy of adsorption [kJ·mol1]

h g :

Molar enthalpy of the equilibrium gas phase [kJ·mol1]

h 1 :

Differential molar enthalpy of the adsorption phase [kJ·mol1]

k :

Correction for the methane adsorption in a monolayer on the surface of mesopores [mmol·(g·Pa)1]

l 0 :

Initial length of the CX sample [mm]

m a :

Mass of regenerated adsorbent [g]

m am :

Mass of a quartz mockup [g]

m g :

Mass of methane adsorbed at specified pressure P and temperature T [g]

m gm :

Mass of methane adsorbed in the system when using the mockup [g]

n :

Dimensionless parameter related to the heterogeneity of the porous structure associated with the pore size distribution

P 0 :

The saturated vapor pressure [Pa]

P cr :

Critical pressure [Pa]

q st :

Differential molar isosteric heat of adsorption [kJ·mol1]

R :

Universal gas constant [J/(mol·K]

S BET :

Specific BET surface area [m2·g1]

S meso :

Specific surface area of mesopores [m2·g1]

s 1 :

Differential molar entropy [kJ·(mol·K)1]

s g :

Entropy of methane in the bulk phase [kJ·(mol·K)1]

T b :

Boiling point [K]

T cr :

Critical temperature [K]

T D :

Discharge temperature [K]

T w :

Working temperature in the ALNG tank [K]

V A(P,T):

Total specific volumes of gas in the adsorbed state in a closed system of unit volume loaded with an adsorbent under specified pressure and temperature P and T [m3(NTP)·m3]

V a :

Reduced volume of the adsorbent-adsorbate system [cm3·g1]

V eff :

Specific methane volume that is discharged from the ALNG storage system to a consumer [m3(NTP)·m3]

V G(P,T):

Total specific volume of free gas in a closed system of unit volume loaded with an adsorbent under specified pressure and temperature P and T [m3(NTP)·m3]

V 0 :

Volume of the regenerated adsorbent with pores [cm3]

V Σ :

Total specific volumetric capacity of the ANG system [m3(NTP)·m3]

ν g :

Specific gas phase volume [m3·kg1]

W 0 :

Specific volume [cm3·g1]

W meso :

Specific volume of mesopores [cm3·g1]

W T :

Total pore volume [cm3·g1]

w MOL :

Effective thickness of the adsorbed methane layer in mesopores [m]

Z :

Compressibility of the equilibrium gas phase at the specified temperature and pressure

α:

Coefficient of linear thermal expansion of adsorbent [K1]

αII :

Coefficient of linear thermal expansion of a graphite crystal in a plane parallel and to a main crystallographic axis (or c-axis) [K1]

α :

Coefficient of linear thermal expansion of a graphite crystal in a plane perpendicular to a main crystallographic axis [K1]

Δl :

Absolute change in the CX adsorbent length [mm]

ε:

Porosity of the adsorbent layer or the fraction of the volume free of the adsorbent

η:

Relative linear deformation of carbon xerogel [%]

ηa :

Relative linear adsorption-stimulated deformation of carbon xerogel [%]

θ:

Scattering angle of X-rays relative to the incident beam

μ:

Molar mass [g·mol1]

ρ:

Density of methane in a monolayer [g·m3

ρa :

Skeletal density of the adsorbent calculated from helium pycnometry data [g·cm3]

ρm :

Density of the quartz mockup [g·cm3]

References

  1. Natural Gas by Country 2022. https://worldpopulationreview.com/country-rankings/natural-gas-by-country. Accessed 30 Nov 2022

  2. Markova, V.M., Churashev, V.N.: Evolution of forecasts for the world and Russian energy development: a way to respond to economic challenges. Int. J. Econ. Manag., 20(3), 108–138 (2020). https://doi.org/10.25205/2542-0429-2020-20-3-108-138

  3. Kumar, K.V., Preuss, K., Titirici, M.-M., Rodríguez-Reinoso, F.: Nanoporous materials for the onboard storage of natural gas. Chem. Rev. 117, 1796–1825 (2017). https://doi.org/10.1021/acs.chemrev.6b00505

    Article  CAS  PubMed  Google Scholar 

  4. Kumar, S., Kwon, H.T., Choi, K.H., Lim, W., Cho, J.H., Tak, K., Moon, I.: LNG: an eco-friendly cryogenic fuel for sustainable development. Appl. Ener. 88, 4264–4273 (2011). https://doi.org/10.1016/j.apenergy.2011.06.035

    Article  CAS  Google Scholar 

  5. Menon, V.C., Komarneni, S.: Porous adsorbents for vehicular natural gas storage: a review. J. Porous Mater. 5, 43–58 (1998). https://doi.org/10.1023/A:1009673830619

    Article  CAS  Google Scholar 

  6. Roszak, E.A., Chorowski, M.: Liquid natural gas regasification combined with adsorbed natural gas filling system. Adv. Cryog. Eng. AIP Conf. Proc. 1434, 1771–1778 (2012). https://doi.org/10.1063/1.4707113

    Article  CAS  Google Scholar 

  7. Roszak, E.A., Chorowski, M.: Exergy of LNG regasification—possible utilization method. Case study of LNG–ANG coupling. Advan. Cryog. Eng. AIP Conf. Proc. 1573, 1379–1386 (2014). https://doi.org/10.1063/1.4860867

  8. Dziewiecki, M.: Adsorbed natural gas tank feeded with liquid natural gas. E3S Web Conf. 44, 00038 (2018). https://doi.org/10.1051/e3sconf/20184400038

  9. Mentasty, L., Faccio, R.J., Zgrablich, G.: High-pressure methane adsorption in 5A zeolite and the nature of gas–solid interactions. Adsorpt. Sci. Technol. 8, 105–113 (1991). https://doi.org/10.1177/026361749100800

    Article  CAS  Google Scholar 

  10. Policicchio, A., Filosa, R., Abate, S., Desiderio, G., Colavita, E.: Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview. J. Porous Mater. 24, 905–922 (2017). https://doi.org/10.1007/s10934-016-0330-9

    Article  CAS  Google Scholar 

  11. Lozano-Castelló, D., Alcañiz-Monge, J., De La Casa-Lillo, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Advances in the study of methane storage in porous carbonaceous materials. Fuel 81, 1777–1803 (2002). https://doi.org/10.1016/S0016-2361(02)00124-2

    Article  Google Scholar 

  12. Tsivadze A.Y., Aksyutin O.E., Ishkov A.G., Men’shchikov I.E., Fomkin A.A., Shkolin A.V., Khozina E.V., Grachev V.A.: Porous carbon-based adsorption systems for natural gas (methane) storage, Russ. Chem. Rev. 87(10), 950–983 (2018). https://doi.org/10.1070/RCR4807

  13. Mason, J.A., Veenstra, M., Long, J.R.: Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014). https://doi.org/10.1039/C3SC52633J

    Article  CAS  Google Scholar 

  14. Mahmoud, E., Ali, L., El Sayah, A., Alkhatib, S.A., Abdulsalam, H., Juma, M., Al-Muhtaseb, A.H.: Implementing metal-organic frameworks for natural gas storage. Crystals 9, 406 (2019). https://doi.org/10.3390/cryst9080406

    Article  CAS  Google Scholar 

  15. Noro, S., Kitagawa, S., Kondo, M., Seki, K.: A new, methane adsorbent, porous coordination polymer [{CuSiF6 (4, 40-bipyridine)2}n]. Angew. Chemie Int. Ed. 39, 2081–2084 (2000). https://doi.org/10.1002/1521-3773(20000616)39:12%3c2081::AID-ANIE2081%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  16. Lin, J.-M., He, C.-T., Liu, Y., Liao, P.-Q., Zhou, D.-D., Zhang, J.-P., Chen, X.M.: A metal-organic framework with a pore size/shape suitable for strong binding and close packing of methane. Angew. Chem. Int. 55, 4674–4678 (2015). https://doi.org/10.1002/anie.201511006

    Article  CAS  Google Scholar 

  17. Mason, J.A., Oktawiec, J., Taylor, M.K., Hudson, M.R., Rodriguez, J., Bachman, J.E., Gonzalez, M.I., Cervellino, A., Guagliardi, A., Brown, C.M., Llewellyn, P.L., Masciocchi, N., Long, J.R.: Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015). https://doi.org/10.1038/nature15732

    Article  CAS  PubMed  Google Scholar 

  18. Casco, M.E., Martínez-Escandell, M., Gadea-Ramos, E., Kaneko, K., Silvestre-Albero, J., Rodríguez-Reinoso, F.: High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem. Mater. 27, 959–964 (2015). https://doi.org/10.1021/cm5042524

    Article  CAS  Google Scholar 

  19. Pekala, F., Kong, M.: A synthetic route to organic aerogels—mechanism, structure, and properties. J. Phys. Colloq. 50, C4-33–C4-40 (1989). https://doi.org/10.1051/jphyscol:1989406

  20. Rey-Raap, N., Menendez, J.A., Arenillas, A.: RF xerogels with tailored porosity over the entire nanoscale. Micropor. Mesopor. Mater. 195, 266–275 (2014). https://doi.org/10.1016/j.micromeso.2014.04.048

    Article  CAS  Google Scholar 

  21. Rey-Raap, N., Menendez, J.A., Arenillas, A.: Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon 78, 490–499 (2014). https://doi.org/10.1016/j.carbon.2014.07.030

    Article  CAS  Google Scholar 

  22. Canal-Rodríguez, M., J. Angel Menéndez, J.A., Arenillas, A.: Carbon Xerogels: The bespoke nanoporous carbons, In: Taher, G. (ed.) Porosity: Process, Technologies and Applications. IntechOpen, London (2017). https://doi.org/10.5772/intechopen.71255. Available from https://www.intechopen.com/chapters/58208. Accessed 30 Nov 2022

  23. Contreras, M.S., Páez, C.A., Zubizarreta, L., Léonard, A., Blacher, S., Olivera-Fuentes, C.G., Arenillas, A., Pirard, J.-P., Job, N.: A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48, 3157–3168 (2010). https://doi.org/10.1016/j.carbon.2010.04.054

    Article  CAS  Google Scholar 

  24. Awadallah-F., A., Al-Muhtaseb, S.A.: Carbon dioxide sequestration and methane removal from exhaust gases using resorcinol–formaldehyde activated carbon xerogel, Adsorption. 19, 967–977 (2013). https://doi.org/10.1007/s10450-013-9508-5

  25. Awadallah-F, A., Al-Muhtaseb, S.A., Jeong, HK. Selective adsorption of carbon dioxide, methane and nitrogen using resorcinol-formaldehyde-xerogel activated carbon. Adsorption. 23, 933–944 (2017). https://doi.org/10.1007/s10450-017-9908-z

  26. Rashed, Y., Messele, S.A., Zeng, H., El-Din, M.G.: Mesoporous carbon xerogel material for the adsorption of model naphthenic acids: structure effect and kinetics modelling. Environ. Technol. 41, 3534–3543 (2020). https://doi.org/10.1080/09593330.2019.1615130

    Article  CAS  PubMed  Google Scholar 

  27. Cuadrado-Collados, C., Farrando-Pérez, J. Martínez-Escandell, M., Ramírez-Montoya L.A., Menéndez, J.A., Arenillas, A., Montes-Morán, M.A., Silvestre-Albero J.: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels. Chem. Eng. J. 402, 126276 (2020). https://doi.org/10.1016/j.cej.2020.126276

  28. Balzer, C., Braxmeier, S., Neimark, A.V., Reichenauer, G.: Deformation of microporous carbon during adsorption of nitrogen, argon, carbon dioxide, and water studied by in situ dilatometry. Langmuir 31, 12512–12519 (2015). https://doi.org/10.1021/acs.langmuir.5b03184

    Article  CAS  PubMed  Google Scholar 

  29. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST. Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. Version 9.1. (2013) Natl Std. Ref. Data Series (NIST NSRDS), Gaithersburg, MD. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912382. Accessed 14 Dec 2021

  30. Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 53, 2498–2508 (2014). https://doi.org/10.1021/ie4033999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. Progr. Surf. Mem. Sci. 9, 1–70 (1975). https://doi.org/10.1016/B978-0-12-571809-7.50006-1

    Article  CAS  Google Scholar 

  32. Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon 27, 457–467 (1989). https://doi.org/10.1016/0008-6223(89)90078-X

    Article  CAS  Google Scholar 

  33. Thommes, M., Kaneko, K., Neimark, A.V., Oliver, J.P., Rodrigues-Reinoso, F., Rouquerol, J., Sing, K.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  34. Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 160, 49–56 (2007). https://doi.org/10.1016/S0167-2991(07)80008-5

    Article  CAS  Google Scholar 

  35. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000). https://doi.org/10.1021/la991011c

    Article  CAS  Google Scholar 

  36. Shkolin, A.V., Fomkin, A.A.: Measurement of carbon-nanotube adsorption of energy-carrier gases for alternative energy systems. Meas. Tech. 61, 395–401 (2018). https://doi.org/10.1007/s11018-018-1440-3

    Article  CAS  Google Scholar 

  37. Shkolin, A.V., Fomkin, A.A., Men’shchikov, I.E., Kharitonov, V.M., Pulin A.L.: A bench for measurements of adsorption of gase and vapors by gravimetric method. RF patent No. 2732199, Bulletin No. 26, Published: 09 September 2020

  38. Shkolin, A.V., Fomkin, A.A., Pulin, A.L., Yakovlev, V.Y.: A technique for measuring an adsorption-induced deformation. Instrum. Exp. Tech. 51, 150–155 (2008). https://doi.org/10.1134/S0020441208010211

    Article  CAS  Google Scholar 

  39. Men’shchikov, I.E., Shkolin, A.V., Fomkin A.A.: Measurements of adsorption and thermal deformations of microporous carbon adsorbents. Meas. Tech. 60, 1051–1057 (2018). https://doi.org/10.1007/s11018-018-1317-5

  40. Shkolin, A.V., Men’shchikov I. E., Khozina E. V., Yakovlev V.Yu, Simonov V. N., Fomkin A.A.: Deformation of microporous carbon adsorbent sorbonorit-4 during methane adsorption. J. Chem. Eng. Data. 67, 1699–1714 (2022). https://doi.org/10.1021/acs.jced.1c00904

  41. Men´shchikov, I.E., Fomkin, A.A., Arabei, A.B., Shkolin, A.V., Strizhenov, E.M.: Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin–Astakhov equation. Prot. Met. Phys. Chem. Surf. 52, 575–580 (2016). https://doi.org/10.1134/S2070205116010160

  42. Kiselev A.V.; Dreving, V.P. (eds.). Eksperimental’nye metody v adsorptsii i khromatographii. (Experimental Methods in Adsorption and Chromatography), p. 448. Moscow University Press, Moscow (1973) (in Russian)

  43. Wiener, M., Reichenauer, G.: Microstructure of porous carbons derived from phenolic resin—impact of annealing at temperatures up to 2000 °C analyzed by complementary characterization methods. Microp. Mesop. Mater. 203, 116–122 (2015). https://doi.org/10.1016/j.micromeso.2014.10.012

    Article  CAS  Google Scholar 

  44. Shkolin, A.V., Fomkin, A.A., Yakovlev, V.Y.: Analysis of adsorption isosteres of gas and vapor on microporous adsorbents. Russ. Chem. Bull. 56, 393–396 (2007). https://doi.org/10.1007/s11172-007-0064-6

    Article  CAS  Google Scholar 

  45. Shkolin, A.V., Fomkin, A.A., Tsivadze, A.Y., Anuchin, K.M., Men’shchikov, I.E., Pulin, A.L.: Experimental study and numerical modeling: methane adsorption in microporous carbon adsorbent over the subcritical and supercritical temperature regions. Prot. Met. Phys. Chem. Surf. 52, 955–963 (2016). https://doi.org/10.1134/S2070205116060186

  46. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu, Shkolin, A.V., Strizhenov, E.M., Pulin, A.L.: Methane adsorption on microporous carbon adsorbents in the region of supercritical temperatures. Prot. Met. Phys. Chem. Surf. 51, 393−398 (2015). https://doi.org/10.1134/S2070205115040243

  47. Alcañiz-Monge, J., Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A.: Fundamentals of methane adsorption in microporous carbons. Microp. Mesop. Mater. 124, 110–116 (2009). https://doi.org/10.1016/j.micromeso.2009.04.041

    Article  CAS  Google Scholar 

  48. https://webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Mask=4&Type=ANTOINE&Plot=on. Accessed 20 Oct 2022

  49. Shkolin, A.V., Fomkin, A.A., Sinitsyn, V.A.: Methane adsorption on auk microporous carbon adsorbent. Colloid. J. 70, 796–801 (2008). https://doi.org/10.1134/S1061933X08060173

    Article  CAS  Google Scholar 

  50. Men’shchikov, I.E., Shkolin, A.V., Fomkin, A.A., Khozina, E.V.: Thermodynamics of methane adsorption on carbon adsorbent prepared from mineral coal. Adsorption. 1095–1107 (2021). https://doi.org/10.1007/s10450-021-00338-4

  51. Shkolin, A.V., Fomkin, A.A.: Deformation of AUK microporous carbon adsorbent induced by methane adsorption. Colloid J. 71, 119–124 (2009). https://doi.org/10.1134/S1061933X09010153

    Article  CAS  Google Scholar 

  52. Yakovlev, V.Yu, Fomkin, A.A., Tvardovski, A.V.: Adsorption and deformation phenomena at the interaction of CO2 and a microporous carbon adsorbent. J. Colloid. Interface. Sci. 268, 33–36 (2004). https://doi.org/10.1016/j.jcis.2004.07.029

  53. Shkolin, A.V., Men’shchikov, I.E., Khozina, E.V., Yakovlev, V.Yu., Fomkin, A.A.: Isotropic and anisotropic properties of adsorption-induced deformation of porous carbon materials. Adsorption (2022). https://doi.org/10.1007/s10450-022-00370-y

  54. Shkolin, A.V., Potapov, S.V., Fomkin, A.A.: Deformation of AUK microporous carbon adsorbent induced by xenon adsorption. Colloid J. 77, 812–820 (2015). https://doi.org/10.1134/S1061933X15060204

    Article  CAS  Google Scholar 

  55. Potapov, S.V., Shkolin, A.V., Fomkin, A.A.: Deformation of AUK microporous carbon adsorbent induced by krypton adsorption. Colloid J. 76, 351–357 (2014). https://doi.org/10.1134/S1061933X14020069

    Article  CAS  Google Scholar 

  56. Gor, G.Y., Neimark, A.V.: Adsorption-induced deformation of mesoporous solids. Langmuir 26, 13021–13027 (2010). https://doi.org/10.1021/la1019247

    Article  CAS  PubMed  Google Scholar 

  57. Gor, G.Y., Huber, P., Bernstein N.: Adsorption-induced deformation of nanoporous materials—a review. Appl. Phys. Rev. 4, 011303 (2017). https://doi.org/10.1063/1.4975001

  58. Nelson, J.B., Riley, D.P.: An experimental investigation of extrapolation methods in the dimensions of crystals derivation of accurate unit-cell. Proc. Phys. Soc. Lond. 57, 160–177 (1945). https://doi.org/10.1088/0959-5309/57/3/302

    Article  CAS  Google Scholar 

  59. Bailey, A.C., Yates, B.: Anisotropic thermal expansion of pyrolytic graphite at low temperatures. J. Appl. Phys. 41, 5088–5091 (1970). https://doi.org/10.1063/1.1658609

    Article  CAS  Google Scholar 

  60. Pierson, H.O.: Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications. Noyes Publications, New Jersey (1993)

    Google Scholar 

  61. Novikova, S.I.: Teplovoe Rasshirenie Tverdykh Tel (Heat Expansion of Solids). Nauka, Moscow, Russia (1974)

    Google Scholar 

  62. Men’shchikov, I., Shkolin, A., Khozina, E., Fomkin, A.: Peculiarities of thermodynamic behaviors of xenon adsorption on the activated carbon prepared from silicon carbide. Nanomaterials. 11, 971 (2021). https://doi.org/10.3390/nano11040971

  63. Mounet, N., Marzari, N.: High-accuracy first-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives Phys. Rev. B. 71, 205214 (2008) https://doi.org/10.1103/PhysRevB.71.205214

  64. Lifshitz, I.M.: Thermal properties of chain and layered structures at low temperatures. Zh. Eksp. Teor. Fiz. 22, 475–486 (1952)

    Google Scholar 

  65. Hill, T.L.: Theory of physical adsorption. In: W.G. Frankenburg, V.I. Komarewsky, E.K. Rideal (eds.) Advances in Catalysis and Related Subjects, Vol. 4, pp. 211–258. Academic Press, New York (1952). https://doi.org/10.1016/S0360-0564(08)60615-X

  66. Shekhovtsova, L.G., Fomkin, A.A.: Two methods of describing adsorption equilibrium. Russ. Chem. Bull. 41, 10–13 (1992). https://doi.org/10.1007/BF00863902

    Article  Google Scholar 

  67. Fomkin, A.A.: Adsorption of gases, vapors and liquids by microporous adsorbents. Adsorption 11, 425–436 (2005). https://doi.org/10.1007/s10450-005-5636-x

    Article  CAS  Google Scholar 

  68. Men’shchikov, I.E., Shkolin, A.V., Fomkin, A.A., Chugaev, S.S.: Adsorption system for reversible storage of liquefied natural gas vapors. Patent RF no. 2781731. Published 2022

  69. Fomkin, A.A., Dubovik, B.A., Limonov, N.V., Pribylov, A.A., Pulin, A.L., Men’shchikov, I.E., Shkolin, A.V.: Methane adsorption on microporous carbon adsorbent prepared from thermochemically activated wood. Prot. Met. Phys. Chem. Surf. 57, 17–21 (2021). https://doi.org/10.1134/S2070205121010081

Download references

Acknowledgements

We thank Dr. Gudrun Reichenauer from the Bavarian Center for Applied Energy Research (ZAE Bayern) for providing the sample of carbon xerogel. We also thank A.A. Shiryaev and V.V. Vysotskii for their help in the XRD and SEM experiments and constructive suggestions. The experiments were carried out with the use of equipment of the Center of Physical Methods of Investigations of the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences.

Funding

The work was supported by the Russian Science Foundation (grant no. 22-73-00184).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: I.M., A.S., A.F.; methodology: A.S., I.M.; software: I.M., A.G.; validation: A.F., A.S.; formal analysis: A.G.; investigation: I.M., A.S., A.G.; resources: A.S.; data curation: A.S., E.K.; writing—original draft preparation: A.S., I.M., E.K.; writing—review and editing: E.K., A.F.; visualization: A.G., I.M., E.K.; supervision: I.M.; project administration: I.M., funding acquisition: I.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ilya E. Men’shchikov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shchikov, I.E., Shkolin, A.V., Khozina, E.V. et al. Mesoporous carbon xerogel as a promising adsorbent for capture and storage of liquified natural gas vapors. Adsorption 29, 255–273 (2023). https://doi.org/10.1007/s10450-023-00411-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00411-0

Keywords

Navigation