Skip to main content
Log in

Adsorption of asphaltenes on multiscale porous alumina

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Alumina catalysts are frequently used in refineries for the hydrotreatment of heavy petroleum fraction that are enriched in asphaltenes. The transport of real and model asphaltenes molecules through powder and alumina’s extrudates treated or not at 150 °C to remove or not surface-adsorbed water was studied. The kinetics and isotherms of adsorption at 298 K were obtained by the solution depletion method. Calorimetric experiments were also investigated. The kinetic is faster on the powder than on the alumina extrudates where the equilibrium is reached after 24 h (against 1 h for the powder) due to mass transfer limitation. The capacity of adsorption of model asphaltenes on untreated powder and extrudates is comparable around 1.1 and 1.2 mg.m− 2 and increases with the heat treatment due to water removal. Both adsorption strength and capacity of real asphaltenes on alumina is lower compared to the model asphaltene molecule which could be explained by the strong interaction between the acidic function of the model molecule and the alumina surface. The calorimetric study in absence of alumina shows the dimerization of model asphaltene molecules. In presence of alumina, the enthalpy of adsorption of model and real asphaltenes on alumina is determined. The enthalpy of adsorption of model asphaltenes on treated powder is higher than on untreated powder meaning that more energetic sites are available (probably due to the release of water-occupied sites) and the curve obtained for treated powder suggests different adsorption sites. The enthalpy of adsorption of model asphaltene is higher for the treated extrudates but these results must be taken carefully because the kinetic of adsorption is very slow (24 h) for extrudates. The effect of flow rate was studied by saturating an extrudate column with model asphaltene molecules. The adsorption increases as the flow rate decreases which could be explained by higher friction in the macropores leading to the release of weakly retained asphaltenes as the flow rate increases or by less intermediate pore blocking by asphaltenes as the flow rate and thus the pressure increases. This study shows that the transport of asphaltenes through porous alumina supports is a complex process depending on many parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3 
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adams, J.J.: Asphaltene Adsorption, a Literature Review. Energy Fuels. 28, 2831–2856 (2014). https://doi.org/10.1021/ef500282p

    Article  CAS  Google Scholar 

  2. Speight, J.G.: In: Industries, C. (ed.) The Chemistry and Technology of Petroleum, vol. 114, 4 edn. CRC Press/Taylor & Francis, Boca Raton (2007)

    Google Scholar 

  3. Marafi, M., Al-Sheeha, H., Al-Omani, S., Al-Barood, A.: Fuel process. technol. 90 (2009). https://doi.org/10.1016/j.fuproc.2008.10.001

  4. Eyssautier, J., Hénaut, I., Levitz, P., Espinat, D., Barré, L.: Energy Fuels. 26, 2696–2704 (2012). https://doi.org/10.1021/ef201412j

    Article  CAS  Google Scholar 

  5. Oh, K., Oblad, S.C., Hanson, F.V., Deo, M.D.: Energy Fuels. 17, 508–509 (2003). https://doi.org/10.1021/ef020138y

    Article  CAS  Google Scholar 

  6. Mullins, O.C., Sabbah, H., Eyssautier, J., Pomerantz, A.E., Barré, L., Andrews, A.B., Ruiz-Morales, Y., Mostowfi, F., McFarlane, R., Goual, L., Lepkowicz, R., Cooper, T., Orbulescu, J., Leblanc, R.M., Edwards, J., Zare, R.N.: Energy Fuels. 26, 3986–4003 (2012). https://doi.org/10.1021/ef300185p

    Article  CAS  Google Scholar 

  7. Castillo, J., Ranaudo, M.A., Fernández, A., Piscitelli, V., Maza, M., Navarro, A.: Colloids Surf., A. 427, 41–46 (2013). https://doi.org/10.1016/j.colsurfa.2013.03.016

    Article  CAS  Google Scholar 

  8. Pradilla, D., Simon, S., Sjöblom, J., Samaniuk, J., Skrzypiec, M., Vermant, J.: Langmuir. 32, 2900–2911 (2016). https://doi.org/10.1021/acs.langmuir.6b00195

    Article  PubMed  CAS  Google Scholar 

  9. Pradilla, D., Subramanian, S., Simon, S., Sjöblom, J., Beurroies, I., Denoyel, R.: Langmuir 32 7294–7305. (2016). https://doi.org/10.1021/acs.langmuir.6b00816

  10. Simon, S., Wei, D., Barriet, M., Sjoblom, J.: Physicochem engin. aspects. 494, 108–115 (2016). https://doi.org/10.1016/j.colsurfa.2016.01.018

    Article  CAS  Google Scholar 

  11. Toulhoat, H., Raybaud, P.: Catalysis by Transition Metal Sulphides - from Molecular Theory to Industrial Application. Technip, Paris (2013)

    Google Scholar 

  12. Morgado Lopes, A., Wernert, V., Sorbier, L., Lecocq, V., Antoni, M., Denoyel, R.: Mic. Mes. Mat. 310, 110640 (2021). https://doi.org/10.1016/j.micromeso.2020.110640

    Article  CAS  Google Scholar 

  13. Santos, V.G., Fasciotti, M., Pudenzi, M.A., Klitzke, C.F., Nascimento, H.L., Pereira, R.C.L., Bastosc, W.L., Eberlin, M.N.: Analyst. 141, 2767–2773 (2016). https://doi.org/10.1039/C5AN02333E

    Article  PubMed  CAS  Google Scholar 

  14. AFNOR NF T60-115:, January 2000 - PRODUITS PETROLIERS -DOSAGE DES ASPHALTENES PRECIPITES PAR L’HEPTANE NORMAL

  15. Taylor, G.,. Series A, Mathematical and physical sciences 225 473–477. (1954). https://doi.org/10.1098/rspa.1954.0216

  16. Denoyel, R., Rouquerol, F., Rouquerol, J.: J. colloid and interf sci. 136, 375–384 (1990). https://doi.org/10.1016/0021-9797(90)90384-Z

    Article  CAS  Google Scholar 

  17. Tayakout, M., Ferreira, C., Espinat, D., Arribas Picon, S., Sorbier, L., Guillaume, D., Guibard, I.: Chem. engin Sci. 65, 1571–1583 (2010). https://doi.org/10.1016/j.ces.2009.10.025

    Article  CAS  Google Scholar 

  18. Gaulier, F., “Etude de la diffusion des charges lourdes en conditions réelles dans les catalyseurs d’hydrotraitment.”Université Claude Bernard Lyon1. (2016)

  19. Czarnecka, E., Gillott, J.E.: J. E Clays Clay Miner. 28, 197–203 (1980). https://doi.org/10.1346/CCMN.1980.0280305

    Article  CAS  Google Scholar 

  20. Melo Faus, F., Grange, P., Delmon, B.: Appl. Catal. 11, 281–293 (1984). https://doi.org/10.1016/S0166-9834(00)81886-2

    Article  Google Scholar 

  21. Morgado Lopes, A.: Reactive Transport Through Nanoporous Materials. Aix Marseille University (2018)

  22. Long Nguyen, K., Wernert, V., Morgado Lopes, A., Sorbier, L., Denoyel, R.: Mic. Mes. Mat. 293, 109776 (2020). https://doi.org/10.1016/j.micromeso.2019.109776

    Article  CAS  Google Scholar 

  23. Kokal, S., Tang, T., Schramm, L., Sayegh, S.: Colloids Surf., A. 94, 253–265 (1995). https://doi.org/10.1016/0927-7757(94)03007-3

    Article  CAS  Google Scholar 

  24. Hallen, D., Wadsoe, I., Wasserman, D.J., Robert, C.H., Gill, S.J.: J. Phys. Chem. 92, 3623–3625 (1988). https://doi.org/10.1021/j100323a058

    Article  CAS  Google Scholar 

  25. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by Powders and Porous Solids, 2nd edn. Academic Press (2012)

  26. Gritti, F., Guiochon, G.: J. Chrom A. 1069, 31–42 (2005). https://doi.org/10.1016/j.chroma.2004.08.129

    Article  CAS  Google Scholar 

  27. Ghorai, S., Pant, K.K.: Sep. Pur Technol. 42, 265–271 (2005). https://doi.org/10.1016/j.seppur.2004.09.001

    Article  CAS  Google Scholar 

  28. Malkoc, E., Nuhoglu, Y., Dundar, M.: J Hazard. mat. 138 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.051

  29. Mohammed, N., Grishkewich, N., Waeijen, H.A., Berry, R.M., Chiu, K., Tam: Carbohydr. Polym. 136, 1194–1202 (2016). https://doi.org/10.1016/j.carbpol.2015.09.099

    Article  PubMed  CAS  Google Scholar 

  30. Wernert, V., Bouchet, R., Denoyel, R.: Mic. Mes. Mat. 140, 97–102 (2011). https://doi.org/10.1016/j.micromeso.2010.09.016

    Article  CAS  Google Scholar 

  31. Dorsey, J.G., Editorial on “Mass transfer kinetics, band broadening and column efficiency” by Gritti, F., Guiochon, G., J. Chrom. A 1221 (2012). https://doi.org/10.1016/j.chroma.2011.11.004

  32. Lambert, N., Kiss, I., Felinger, A.: J. Chrom A. 1366, 84–91 (2014). https://doi.org/10.1016/j.chroma.2014.09.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sébastien Simon and Johan Sjöblom of the Ugelstad Laboratory, Norwegian University of Science and Technology (NTNU) who provided the model asphaltene molecule.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Wernert.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.M., Wernert, V., Sorbier, L. et al. Adsorption of asphaltenes on multiscale porous alumina. Adsorption 28, 261–273 (2022). https://doi.org/10.1007/s10450-022-00366-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-022-00366-8

Keywords

Navigation