Skip to main content
Log in

Modelling binary non-linear chromatography using discrete equilibrium data

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The determination and description of adsorption equilibria is critical for the design of several separation processes. In some instances, the dependence of the solid phase loading on the fluid phase concentration is complex and it is difficult to find a suitable functional form to represent the adsorption equilibria. This difficulty can be overcome by the use of discrete equilibrium data, i.e., using the experimental data of solid phase loadings and the corresponding fluid phase concentrations in its discrete form, without the use of a functional form to describe the adsorption isotherms. In this work we demonstrate how discrete equilibrium data can be used to predict binary competitive equilibria using the ideal adsorbed solution theory. Two approximations to generate data outside the range of measured values are proposed. The effectiveness of these methods in predicting competitive equilibria and elution profile of binary injections is demonstrated using numerical simulations. The application of this framework to estimate the regions of achievable separation for a multi-column simulated moving bed chromatographic separation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

b :

Equilibrium constant in Langmuir isotherm (L \(\text {g}^{-1}\))

c :

Fluid phase concentration of solute (g \(\text {L}^{-1}\))

\(D_{\text {L}}\) :

axial dispersion coefficient (\({\text {cm}}^{2}\, \text {s}^{-1}\))

H :

Henry constant

L :

Length of column (cm)

m :

Dimensionless flow rate ratio

Pu :

Target product purity (%)

Q :

Volumetric flow rate (\({\text {cm}}^{3}\, \text {s}^{-1}\))

q :

Solid phase concentration of solute (g \(\text {L}^{-1}\))

\(q^*\) :

Solid phase equilibrium concentration of solute (g \(\text {L}^{-1}\))

t :

Time (s)

\(t^*\) :

Switch time (s)

v :

Interstitial velocity (cm \(\text {s}^{-1}\))

x :

Molar fraction on the solid phase

z :

Axial coordinate (cm)

D:

Desorbent

E:

Extract

F:

Feed

i :

Component

j :

SMB section

R:

Raffinate

sat:

Saturation

tot:

Total

\(\varepsilon\) :

Column void fraction

References

  • Forssén, P., Fornstedt, T.: A model free method for estimation of complicated adsorption isotherms in liquid chromatography. J. Chromatogr. A 1409, 108–115 (2015)

    Article  PubMed  Google Scholar 

  • Guiochon, G., Felinger, A., Shirazi, S.G., Katti, A.M.: Fundamentals of Preparative and Nonlinear Chromatography. Academic Press, Boston (2006)

    Google Scholar 

  • Haghpanah, R., Rajendran, A., Farooq, S., Karimi, I.A., Amanullah, M.: Discrete equilibrium data from dynamic column breakthrough experiments. Ind. Eng. Chem. Res. 51(45), 14834–14844 (2012)

    Article  CAS  Google Scholar 

  • Hefti, M., Joss, L., Bjelobrk, Z., Mazzotti, M.: On the potential of phase-change adsorbents for \(\text{ CO }_{2}\) capture by temperature swing adsorption. Faraday Discuss. 192, 153–179 (2016)

    CAS  PubMed  Google Scholar 

  • Ilić, M., Flockerzi, D., Seidel-Morgenstern, A.: A thermodynamically consistent explicit competitive adsorption isotherm model based on second-order single component behaviour. J. Chromatogr. A 1217(14), 2132–2137 (2010)

    Article  PubMed  Google Scholar 

  • Kaspereit, M., Seidel-Morgenstern, A., Kienle, A.: Design of simulated moving bed processes under reduced purity requirements. J. Chromatogr. A 1162, 2–13 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Landa, H.O.R., Flockerzi, D., Seidel-Morgenstern, A.: A method for efficiently solving the IAST equations with an application to adsorber dynamics. AIChE J. 59(4), 1263–1277 (2013)

    Article  CAS  Google Scholar 

  • Lisec, O., Hugo, P., Seidel-Morgenstern, A.: Frontal analysis method to determine competitive adsorption isotherms. J. Chromatogr. A 908(1–2), 19–34 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Mangano, E., Friedrich, D., Brandani, S.: Robust algorithms for the solution of the ideal adsorbed solution theory equations. AIChE J. 61(3), 981–991 (2015)

    Article  CAS  Google Scholar 

  • Maruyama, R.T., Karnal, P., Sainio, T., Rajendran, A.: Design of bypass-simulated moving bed chromatography for reduced purity requirements. Chem. Eng. Sci. 205, 401–413 (2019)

    Article  CAS  Google Scholar 

  • Mazzotti, M., Storti, G., Morbidelli, M.: Optimal operation of simulated moving bed units for nonlinear chromatographic separations. J. Chromatogr. A 769(1), 3–24 (1997)

    Article  CAS  Google Scholar 

  • Myers, A.L.: Activity coefficients of mixtures adsorbed on heterogeneous surfaces. AIChE J. 29(4), 691–693 (1983)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  CAS  Google Scholar 

  • Nicoud, R.-M.: Chromatographic Processes. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  • Pai, K.N., Baboolal, J.D., Sharp, D.A., Rajendran, A.: Evaluation of diamine-appended metal-organic frameworks for post-combustion \(\text{ CO }_{2}\) capture by vacuum swing adsorption. Sep. Purif. Technol. 211, 540–550 (2019)

    CAS  Google Scholar 

  • Radke, C.J., Prausnitz, J.M.: Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J. 18(4), 761–768 (1972)

    Article  CAS  Google Scholar 

  • Rajendran, A.: Equilibrium theory-based design of simulated moving bed processes under reduced purity requirements. linear isotherms. J. Chromatogr. A 1185(2), 216–222 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Rajendran, A., Mazzotti, M.: Local equilibrium theory for the binary chromatography of species subject to a generalized langmuir isotherm. 2. Wave interactions and chromatographic cycle. Ind. Eng. Chem. Res. 50(1), 352–377 (2011)

    Article  CAS  Google Scholar 

  • Rajendran, A., Paredes, G., Mazzotti, M.: Simulated moving bed chromatography for the separation of enantiomers. J. Chromatogr. A 1216(4), 709–738 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, A.E.: Simulated moving bed technology: principles, design and process applications. Butterworth-Heinemann, Oxford (2015)

    Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Seidel-Morgenstern, A.: Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A 1037(1–2), 255–272 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Seidel-Morgenstern, A., Guiochon, G.: Modelling of the competitive isotherms and the chromatographic separation of two enantiomers. Chem. Eng. Sci. 48(15), 2787–2797 (1993)

    Article  CAS  Google Scholar 

  • Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45(16), 5435–5448 (2006)

    Article  CAS  Google Scholar 

  • Tarafder, A., Mazzotti, M.: A method for deriving explicit binary isotherms obeying the ideal adsorbed solution theory. Chem. Eng. Technol. 35(1), 102–108 (2012)

    Article  CAS  Google Scholar 

  • Wilkins, N.S., Rajendran, A.: Measurement of competitive \(\text{ CO }_2\) and \(\text{ N }_{2}\) adsorption on Zeolite 13X for post-combustion \(\text{ CO }_{2}\) capture. Adsorption 25(2), 115–133 (2019)

    CAS  Google Scholar 

  • Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, D.G., Hupp, J.T., Snurr, R.Q.: Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 4(2), 83 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from Natural Science and Engineering Research Council, Canada through Discovery Grants program, Project Number RGPIN-2019-5018, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Rajendran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, A., Maruyama, R.T., Landa, H.O.R. et al. Modelling binary non-linear chromatography using discrete equilibrium data. Adsorption 26, 973–987 (2020). https://doi.org/10.1007/s10450-020-00220-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00220-9

Keywords

Navigation