Skip to main content
Log in

Adsorptive dehydration of ethanol using 3A zeolite: an evaluation of transport behaviour in a two-phase zeolite pellet

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This paper dwells into the diffusional transport of water inside a pelleted zeolites wherein the transport behavior in binder phase as well as in the zeolite phase is explored. It is noted that both the phases contributes towards the separation process. A new variant of bi-disperse diffusion model is proposed for the water transport inside the adsorbent pellets. The equilibrium uptake of water is separately encountered in the binder and zeolite phases using a dual site Henry-Langmuir isotherm and a thermodynamically consistent correlation is developed for the boundary layer concentration of the zeolite phase with respect to the concentration within the binder phase. Adsorption kinetics measurements are reported for various adsorbent sizes and process temperatures, and their influence on transport diffusivity is explored. The proposed model prediction is in good agreement with the experimental observation in which the pellet diffusion controls the overall transport behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Cb :

Water concentration in the bulk liquid phase, mol/m3

Cp :

Concentration of water in the binder phase, mol H2O/m3 binder or g H2O/g binder

Cμ :

Concentration of water in the zeolite phase, mol H2O/m3 zeolite or g H2O/g zeolite

Dp :

Water diffusivity in binder phase, m2/s

Dμ :

Water diffusivity in zeolite phase, m2/s

Deff :

Effective diffusivity of water in entire solid if a unipore model is used, m2/s

Dmolecular :

Molecular diffusivity of water into ethanol solution, m2/s

D0 :

Diffusivity at zero coverage m2/s

Dpore :

Pore diffusivity of the binder phase

Ea :

Activation energy for water diffusion kJ/mol

EH :

Heat of adsorption in binder phase, kJ/mol

EL :

Heat of adsorption in zeolite phase, kJ/mol

KH :

Solid liquid equilibrium constant in binder phase, m3/mol

KL :

Solid liquid equilibrium constant in zeolite phase, m3/mol

mp :

Mass of total adsorbent, g

MB :

Molar mass of solvent

qads :

Total adsorbed amount in the solid phase g H2O/g sample

qmax :

Monolayer concentration of water in the zeolite phase, mol H2O/m3 solid or g H2O/g solid

Rp :

Radius of the spherical pellet, m

Rμ :

Radius of the zeolite microparticle, m

Rg :

Universal gas constant

r:

Radius at any point in the pellet, m

rμ :

Radius at any point in the microparticle, m

Sμ :

Surface area of the zeolite microparticle, m2

T:

Temperature, K

Vμ :

Volume of the zeolite microparticle, m3

Vb :

Volume of liquid in the vessel, m3

\({\mathcal{V}}\) A :

Molar volume of solute at boiling point, m3/mol

εp :

Binder phase fraction, unitless or m3 binder/m3 solid sphere

εμ :

Micro particle or zeolite phase fraction, unitless or m3 microparticle/m3 solid sample

ϕ:

Dimensionless factor, typically 1.5 for ethanol

ρp :

Density of adsorbent, g/m3, 1.2 × 106 g/m3

ηB :

Viscosity of solvent, cP

τp :

Tortuosity in binder phase, unit less

σcc :

Lennard-Jones fluid–fluid collision distance, nm

θ:

Fractional coverage of the solid, moles adsorbed/maximum moles that can be adsorbed

ϵp :

Binder phase porosity, unit less or pore volume/total volume

\(\wp = {\mathcal{V}}\sigma^{1/4}\) :

Parachor term in Tyn and Calus model

Σ:

Surface tension g/s2

References

  • Bhatia, S.: Stochastic theory of transport in inhomogeneous media. Chem. Eng. Sci. 41(5), 1311–1324 (1986)

    Article  CAS  Google Scholar 

  • Black, C.: Distillation modeling of ethanol recovery and dehydration process for ethanol and gasohol. Chem. Eng. Prog. 76, 78–85 (1980)

    CAS  Google Scholar 

  • Carmo, M., et al.: Kinetic and thermodynamic study on the liquid phase adsorption by starchy materials in the alcohol-water system. Adsorption 10(3), 211–218 (2004)

    Article  CAS  Google Scholar 

  • Chandrasekhar, S.: Influence of metakaolinization temperature on the formation of zeolite 4A from kaolin. Clay Miner. 31(2), 253–261 (1996)

    Article  CAS  Google Scholar 

  • Chudasama, C.D., Sebastian, J., Jasra, R.V.: Pore-size engineering of zeolite A for the size/shape selective molecular separation. Ind. Eng. Chem. Res. 44(6), 1780–1786 (2005)

    Article  CAS  Google Scholar 

  • Da Silva, F.A., Rodrigues, A.E.: Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets. Ind. Eng. Chem. Res. 38(5), 2051–2057 (1999)

    Article  Google Scholar 

  • Demontis, P., et al.: Diffusion of water in zeolites Na A and NaCa A: a molecular dynamics simulation study. J. Phys. Chem. C 114(43), 18612–18621 (2010)

    Article  CAS  Google Scholar 

  • Do, D.D.: Sorption rate of bimodal microporous solids with an irreversible isotherm. Chem. Eng. Sci. 44(8), 1707–1713 (1989)

    Article  CAS  Google Scholar 

  • Gao, X., da Costa, J.C.D., Bhatia, S.K.: Understanding the diffusional tortuosity of porous materials: an effective medium theory perspective. Chem. Eng. Sci. 110, 55–71 (2014)

    Article  CAS  Google Scholar 

  • Haynes, H.W., Sarma, P.N.: A model for the application of gas chromatography to measurements of diffusion in bidisperse structured catalysts. AIChE J. 19(5), 1043–1046 (1973)

    Article  CAS  Google Scholar 

  • Hirsch, R.L., Bezdek, R., Wendling, R.: Peaking of world oil production. In: Proceedings of the IV International Workshop on Oil and Gas Depletion. (2005)

  • Jain, A.K., Gupta, A.K.: Adsorptive drying of isopropyl alcohol on 4A molecular sieves: equilibrium and kinetic studies. Sep. Sci. Technol. 29(11), 1461–1472 (1994)

    Article  CAS  Google Scholar 

  • Jensen, B., et al.: The impact of electrostatics in bulk Linde Type A zeolites. Microporous Mesoporous Mater. 201, 105–115 (2015)

    Article  CAS  Google Scholar 

  • Johnson, E., Arshad, S.E.: Hydrothermally synthesized zeolites based on kaolinite: a review. Appl. Clay Sci. 97, 215–221 (2014)

    Article  Google Scholar 

  • Joshi, S., Fair, J.R.: Adsorptive drying of toluene. Ind. Eng. Chem. Res. 27(11), 2078–2085 (1988)

    Article  CAS  Google Scholar 

  • Lalik, E., et al.: Microcalorimetric study of sorption of water and ethanol in zeolites 3A and 5A. Catal. Today 114(2), 242–247 (2006)

    Article  CAS  Google Scholar 

  • Lin, R., et al.: Kinetics of water vapor adsorption on single-layer molecular sieve 3A: experiments and modeling. Ind. Eng. Chem. Res. 53(41), 16015–16024 (2014)

    Article  CAS  Google Scholar 

  • Ma, Y., Ho, S.: Diffusion in synthetic faujasite powder and pellets. AIChE J. 20(2), 279–284 (1974)

    Article  CAS  Google Scholar 

  • Matsura, T.: Synthetic Membrane and Membrane Separation Process. CRC Press, Boca Raton (1995)

    Google Scholar 

  • Mehlhorn, D., et al.: Transport enhancement in binderless zeolite X-and A-type molecular sieves revealed by PFG NMR diffusometry. Microporous Mesoporous Mater. 188, 126–132 (2014)

    Article  CAS  Google Scholar 

  • Mortier, W., Van den Bossche, E., Uytterhoeven, J.: Influence of the temperature and water adsorption on the cation location in Na Y zeolites. Zeolites 4(1), 41–44 (1984)

    Article  CAS  Google Scholar 

  • Navajas, A., et al.: Preparation of mordenite membranes for pervaporation of water-ethanol mixtures. Desalination 148(1), 25–29 (2002)

    Article  CAS  Google Scholar 

  • Pavlov, M., Travkina, O., Kutepov, B.: Grained binder-free zeolites: synthesis and properties. Catal. Ind. 4(1), 11–18 (2012)

    Article  Google Scholar 

  • Pera-Titus, M., et al.: Modeling pervaporation of ethanol/water mixtures within ‘real’zeolite NaA membranes. Ind. Eng. Chem. Res. 47(9), 3213–3224 (2008)

    Article  CAS  Google Scholar 

  • Poling, B.E., Prausnitz, J.M., O’connell, J.P.: The Properties of Gases and Liquids. Vol. 5. Mcgraw-hill, New York (2001)

    Google Scholar 

  • Ruckenstein, E., Vaidyanathan, A., Youngquist, G.: Sorption by solids with bidisperse pore structures. Chem. Eng. Sci. 26(9), 1305–1318 (1971)

    Article  CAS  Google Scholar 

  • Santos, B.A., et al.: Adsorption of H2O and dimethyl carbonate at high pressure over zeolite 3A in fixed bed column. Ind. Eng. Chem. Res. 53(6), 2473–2483 (2014)

    Article  CAS  Google Scholar 

  • Sargent, R., Whitford, C.: Diffusion of carbon dioxide in type 5A molecular sieve. ACS Publications, Washington DC (1971)

    Book  Google Scholar 

  • Schumann, K., et al.: Investigation on the pore structure of binderless zeolite 13 × shapes. Microporous Mesoporous Mater. 154, 119–123 (2012)

    Article  CAS  Google Scholar 

  • Sebastian, J., Jasra, R.V.:Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon. Google Patents, 2003

  • Silva, J.A., et al.: Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 187, 100–107 (2014)

    Article  CAS  Google Scholar 

  • Simo, M., et al.: Adsorption/desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed. Ind. Eng. Chem. Res. 48(20), 9247–9260 (2009)

    Article  CAS  Google Scholar 

  • Sowerby, B., Crittenden, B.: An experimental comparison of type A molecular sieves for drying the ethanol-water azeotrope. Gas Sep. Purif. 2(2), 77–83 (1988)

    Article  Google Scholar 

  • Suzuki, M.: Fundamentals of Adsorption. Vol. 80. Elsevier, Amsterdam (1993)

    Google Scholar 

  • Teo, W.K., Ruthven, D.M.: Adsorption of water from aqueous ethanol using 3-. ANG. molecular sieves. Ind. Eng. Chem. Process Des. Dev. 25(1), 17–21 (1986)

    Article  CAS  Google Scholar 

  • Valiullin, R., et al.: Dynamics of water diffusion in mesoporous zeolites. Microporous Mesoporous Mater. 142(1), 236–244 (2011)

    Article  CAS  Google Scholar 

  • Verduijn, J.P.: Process for producing substantially binder-free zeolite. Google Patents, 1995

  • Verduijn, J.P.: Process for producing substantially binder-free zeolite. Google Patents, 1997

  • Wakao, N., Smith, J.: Diffusion in catalyst pellets. Chem. Eng. Sci. 17(11), 825–834 (1962)

    Article  CAS  Google Scholar 

  • Wang, C.T., Smith, J.: Tortuosity factors for diffusion in catalyst pellets. AIChE J. 29(1), 132–136 (1983)

    Article  CAS  Google Scholar 

  • Wang, X.-P., et al.: A novel composite chitosan membrane for the separation of alcohol-water mixtures. J. Membr. Sci. 119(2), 191–198 (1996)

    Article  CAS  Google Scholar 

  • Weber, T.W., Chakravorti, R.K.: Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 20(2), 228–238 (1974)

    Article  CAS  Google Scholar 

  • Yamamoto, T., et al.: Adsorption characteristics of zeolites for dehydration of ethanol: evaluation of diffusivity of water in porous structure. Chem. Eng. J. 181, 443–448 (2012)

    Article  Google Scholar 

  • Yeh, Y., Yang, R.: Diffusion in zeolites containing mixed cations. AIChE J. 35(10), 1659–1666 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.S is thankful to Mr Arun Nair, Manager Zeolite and Allied products India, for supplying the samples and useful discussions on phone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Dong, K., Rudolph, V. et al. Adsorptive dehydration of ethanol using 3A zeolite: an evaluation of transport behaviour in a two-phase zeolite pellet. Adsorption 25, 1611–1623 (2019). https://doi.org/10.1007/s10450-019-00145-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00145-y

Keywords

Navigation