Skip to main content
Log in

In silico studies of the interaction of the colon cancer receptor and RNA aptamer adsorbed on (1 0 1) facet of TiO2 nanoparticle investigated by molecular dynamics simulation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The epidermal growth factor receptor (EGFR) is a trans-membrane protein which belongs to the ErbB family of receptor tyrosine kinases (RTK). The peptide growth factors of the EGF-family of proteins activated these trans-membrane proteins by binding to them. In order to blocking these receptors and prevent over-expression in human carcinomas, we used a potential anticancer RNA aptamer. The RNA aptamer was delivered to the target receptor with the TiO2 nanosheet using the molecular dynamics simulation. The structural and energetic parameters were measure and analyzed in detail. The root mean square deviation and fluctuation and center of mass of components were calculated. Besides, the hydrogen bonds were considered to investigate the effect of water molecules. The van de Waals and electrostatics contributions depict the attractive force between RNA aptamer and the receptor. Our results suggest that for better interaction of RNA aptamer and receptor, first the RNA aptamer should release from the Nano carrier surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stamos, J., Sliwkowski, M.X., Eigenbrot, C.: Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002)

    PubMed  CAS  Google Scholar 

  2. Schlessinger, J., Ullrich, A.: Growth factor signaling by receptor tyrosin kinases. Neuron 9, 383–391 (1992)

    PubMed  CAS  Google Scholar 

  3. Salomon, D.S., Brandt, R., Ciardiello, F., Normanno, N.: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19, 183–232 (1995)

    PubMed  CAS  Google Scholar 

  4. Normanno, N., Bianco, C., De Luca, A., Salomon, D.S.: The role of EGF related peptides in tumor growth. Front. Biosci. 6, d685–d707 (2001)

    PubMed  CAS  Google Scholar 

  5. Normanno, N., De Luca, A., Bianco, C., et al.: Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006)

    PubMed  CAS  Google Scholar 

  6. Salomon, D.S., Kim, N., Saeki, T., Ciardiello, F.: Transforming growth factor-α: an oncodevelopmental growth factor. Cancer Cells 2, 389–397 (1990)

    PubMed  CAS  Google Scholar 

  7. Campbell, I.D., Bork, P.: Epidermal growth factor-like modules. Curr. Opin. Struct. Biol. 3, 385–392 (1993)

    CAS  Google Scholar 

  8. Olayioye, M.A., Beuvink, I., Horsch, K., Daly, J.M., Hynes, N.E.: ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J. Biol. Chem. 274, 17209–17218 (1999)

    PubMed  CAS  Google Scholar 

  9. Gullick, W.J.: The Type 1 growth factor receptors and their ligands considered as a complex system. Endocr. Relat. Cancer 8, 75–82 (2001)

    PubMed  CAS  Google Scholar 

  10. Schlessinger, J.: Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000)

    PubMed  CAS  Google Scholar 

  11. Garrett, T.P., et al.: Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110, 763–773 (2002)

    PubMed  CAS  Google Scholar 

  12. Ogiso, H., et al.: Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002)

    PubMed  CAS  Google Scholar 

  13. Caiazza, F., Ryan, E.J., Doherty, G., Winter, D.C., Sheahan, K.: Estrogen receptors and their implications in colorectal carcinogenesis. J. Front. Oncol. 5, 19 (2015)

    Google Scholar 

  14. Marino, M., Caiazza, F.: Estrogen signal transduction pathways from plasmamembrane to the nucleus. In: Grachevsky, N.O. (ed.) Signal transduction research trends, pp. 17–44. Nova Science Publisher, New York (2007)

    Google Scholar 

  15. O’Malley, B.W.: A life-long search for the molecular pathways of steroid hormone action. Mol. Endocrinol. 19, 1402–1411 (2005)

    PubMed  Google Scholar 

  16. Rudolph, A., Toth, C., Hoffmeister, M., Roth, W., Herpel, E., Jansen, L., et al.: Expression of oestrogen receptor β and prognosis of colorectal cancer. Br. J. Cancer 107, 831–839 (2012)

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Germer, K., Leonard, M., Zhang, X.: RNA aptamer and their therapeutic and diagnostic application. Int. J. Biochem. Mol. Biol 4(1), 27–40 (2013)

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990)

    PubMed  CAS  Google Scholar 

  19. Keefe, A.D., Pai, S., Ellington, A.: Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010)

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Dougherty, C., Cai, W., Hong, H.: applications of aptamers in targeted imaging: state of the art. Curr. Top. Med. Chem. 15, 1138–1152 (2015)

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Hong, H., Goel, S., Zhang, Y., Cai, W.: Molecular imaging with nucleic acid aptamers. Curr. Med. Chem. 18, 4195–4205 (2011)

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Morita, Y., Leslie, M., Kameyama, H., Volk, D., Tanaka, T.: Aptamer therapeutics in cancer: current and future. Cancers 10, 80 (2018)

    PubMed Central  Google Scholar 

  23. Hori, S., Herrera, A., Rossi, J., Zhou, J.: Current advances in aptamers for cancer diagnosis and therapy. Cancers 10, 9 (2018)

    PubMed Central  Google Scholar 

  24. Habibzadeh Mashatooki, M., Jahanbin Sardroodi, J., Rastkar Ebrahimzadeh, A.: Molecular dynamics investigation of the interactions between RNA aptamer and graphene-monoxide/boron-nitride surfaces: applications to novel drug delivery systems. J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01089-0

    Article  Google Scholar 

  25. Cerchia, L.: Aptamers: promising tools for cancer diagnosis and therapy. Cancers 10, 132 (2018). https://doi.org/10.3390/cancers10050132

    Article  PubMed Central  CAS  Google Scholar 

  26. Li, N., Nguyen, H.H., Byrom, M., Ellington, A.D.: Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 6, e20299 (2011)

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Yu, X., Ghamande, S., Liu, H., Xue, L., Zhao, S., Tan, W., Zhao, L., Tang, S.C., Wu, D., Korkaya, H., Maihle, N.J., Liu, H.Y.: Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2+ breast cancer. Mol. Ther. Nucleic Acids 10, 317–330 (2018)

    PubMed  CAS  Google Scholar 

  28. Romanucci, V., Zarrelli, A., Liekens, S., Noppen, S., Pannecouque, C., Di Fabio, G.: New findings on the d(TGGGAG) sequence: surprising anti-HIV-1 activity. Eur. J. Med. Chem. 145, 425–430 (2018)

    PubMed  CAS  Google Scholar 

  29. Bala, J., Chinnapaiyan, S., Dutta, R.K., Unwalla, H.: Aptamers in HIV research diagnosis and therapy. RNA Biol. 15, 327–337 (2018)

    PubMed  PubMed Central  Google Scholar 

  30. Henri, J.L., Macdonald, J., Strom, M., Duan, W., Shigdar, S.: Aptamers as potential therapeutic agents for ovarian cancer. Biochimie 145, 34–44 (2018)

    PubMed  CAS  Google Scholar 

  31. Jung, J.I., Han, S.R., Lee, S.W.: Development of RNA aptamer that inhibits methyltransferase activity of dengue virus. Biotechnol. Lett. 40, 315–324 (2018)

    PubMed  CAS  Google Scholar 

  32. Setvin, M., Hao, X., Daniel, B., Pavelec, J., Diebold, U.: Charge trapping at the step edges of TiO2 anatase (101). Angew. Chem. Int. Ed. 53, 4714–4716 (2014)

    CAS  Google Scholar 

  33. Yin, Z.F., Wu, L., Yang, H.G., Su, Y.H.: Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 15, 4844 (2013)

    PubMed  Google Scholar 

  34. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    PubMed  CAS  Google Scholar 

  35. Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., Whitfield, H.J.: Energetics of nanocrystalline TiO2. Proc. Natl Acad. Sci. U.S.A. 99, 6476–6481 (2002)

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang, H., Banfield, J.F.: Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 114, 9613–9644 (2014)

    PubMed  CAS  Google Scholar 

  37. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    CAS  Google Scholar 

  38. Habibzadeh Mashatooki, M., Rastkar Ebrahimzadeh, A., Jahanbin Sardroodi, J., Abbasi, A.: Investigation of TiO2 anatase (1 0 1), (1 0 0) and (1 1 0) facets as immobilizer for a potential anticancer RNA aptamer: a classical molecular dynamics simulation. Mol. Simul. (2019). https://doi.org/10.1080/08927022.2019.1605601

    Article  Google Scholar 

  39. Kavathekar, R.S., Dev, P., English, N.J., MacElroy, J.M.D.: Molecular dynamics study of water in contact with TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface. Mol. Phys. 109, 1649–1656 (2011)

    CAS  Google Scholar 

  40. Choi, K.H.: Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol. Cancer Ther. 5, 2428–2434 (2006)

    PubMed  CAS  Google Scholar 

  41. Mi, J., Liu, Y., Rabbani, Z.N., Yang, Z., Urban, J.H., Sullenger, B.A., Clary, B.M.: In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6, 22–24 (2010)

    PubMed  CAS  Google Scholar 

  42. Lee, H.K., Choi, Y.S., Park, Y.A., Jeong, S.: Modulation of oncogenic transcription and alternative splicing by beta-catenin and an RNA aptamer in colon cancer cells. Cancer Res 66, 10560–10566 (2006)

    PubMed  CAS  Google Scholar 

  43. Xayaphoummine, A., Bucher, T., Isambert, H.: Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res 33, W605–W610 (2005)

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Magnus, M., Boniecki, M.J., Dawson, W., Bujnicki, J.M.: SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res 44, 315–319 (2016)

    Google Scholar 

  45. Ziolkowski, J.: New method of calculation of the surface enthalpy of solids. Surf. Sci. 209, 536–561 (1989)

    CAS  Google Scholar 

  46. Wen, C.Z., Zhou, J.Z., Jiang, H.B., Hu, Q.H., Qiao, S.Z., Yang, H.G.: Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy 001 and 100 facets. Chem. Commun. 74, 4400 (2011)

    Google Scholar 

  47. Andrés, J., Gracia, L., Gouveia, A.F., Ferrer, M.M., Longo, E.: Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology 26, 405703 (2015)

    PubMed  Google Scholar 

  48. Moura, K.F., Maul, J., Albuquerque, A.R., Casali, G.P., Longo, E., Keyson, D., Souza, A.G., Sambrano, J.R., Santos, I.M.G.: TiO2 synthesized by microwave assisted solvothermal method: experimental and theoretical evaluation. J. Solid State Chem. 210, 171–177 (2014)

    CAS  Google Scholar 

  49. Wulff, G.: Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Z. Kristallogr. 34, 449–530 (1901)

    CAS  Google Scholar 

  50. Lazzeri, M., Vittadini, A., Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B. 63, 155409 (2001)

    Google Scholar 

  51. Barnard, A.S., Zapol, P.: Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B. 108, 18435–18440 (2004)

    CAS  Google Scholar 

  52. American Mineralogist Crystal Structure Database, 2018 (n.d.): http://rruff.geo.arizona.edu/AMS/amcsd.php. Accessed 8 June 2018

  53. Fleming, S., Rohl, A.: GDIS: a visualization program for molecular and periodic systems. Z. Kristallogr. 220, 580–584 (2005)

    CAS  Google Scholar 

  54. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Mackerell, A.D.: CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput., Chem (2009)

    Google Scholar 

  56. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  PubMed  CAS  Google Scholar 

  57. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd edn. Springer, New York (1991)

    Google Scholar 

  58. Feller, S.E., Zhang, Y., Pastor, R.W., Brooks, B.R.: Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613 (1995)

    CAS  Google Scholar 

  59. Chng, C.P.: Effect of simulation temperature on phospholipid bilayer–vesicle transition studied by coarse-grained molecular dynamics simulations. Soft Matter 9, 7294–7301 (2013)

    CAS  Google Scholar 

  60. McQuarrie, D.A.: Statistical Thermodynamics. University Science Books, Mill Valley (1984)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Azarbaijan Shahid Madani University (Grant number 214/D/25972) support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohaddeseh Habibzadeh Mashatooki or Jaber Jahanbin Sardroodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibzadeh Mashatooki, M., Abbasi, A. & Jahanbin Sardroodi, J. In silico studies of the interaction of the colon cancer receptor and RNA aptamer adsorbed on (1 0 1) facet of TiO2 nanoparticle investigated by molecular dynamics simulation. Adsorption 26, 941–954 (2020). https://doi.org/10.1007/s10450-019-00126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00126-1

Keywords

Navigation