Skip to main content
Log in

Characteristics of activated carbon in elevated-temperature pressure swing adsorption desulfurization

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Elevated-temperature pressure swing adsorption could potentially replace wet methods in the field of syngas purification. However, the reversibility of sulfur removal in this technique needs to be validated. In this study, the H2S adsorption reversibility of two types of activated carbon sorbents were evaluated on a fixed-bed reactor. The effects of desorption method and desorption temperature were studied. Elevated-temperature vacuum desorption was found to be effective for regenerating adsorbents saturated with H2S. The necessities of both vacuum desorption and elevated temperature were reported. The findings were explained on the basis of the characterization results obtained using pore distribution analysis, inductively coupled plasma, and X-ray photoelectron spectroscopy. The oxidative functional groups or adsorbed O2 reacted with H2S on the surface of the adsorbents and the resultant, i.e., elemental sulfur, damaged the pore structure. The richness of the pores with a diameter range of 0.7–0.8 nm decreased by nearly 50% after several adsorption–desorption cycles. At high temperatures and under vacuum atmosphere, element sulfur could be easily distilled and removed from the fixed bed. Thus, element sulfur would not accumulate on the adsorbent, thus ensuring the reversibility of H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alptekin, G.O., Jayaraman A., Dietz S., Bonnema M., Rao A.: A low cost, high capacity regenerable sorbent for pre-combustion CO2 capture. TDA Research (2012)

  • Anna, H.R.S., Barreto Jr., A.G., Tavares, F.W., do Nascimento, J.F.: Methane/nitrogen separation through pressure swing adsorption process from nitrogen-rich streams. Chem. Eng. Process. 103, 70–79 (2016)

    Article  CAS  Google Scholar 

  • Ashrafi, O., Bashiri, H., Esmaeili, A., Sapoundjiev, H., Navarri, P.: Ejector integration for the cost effective design of the Selexol™ process. Energy 162, 380–392 (2018)

    Article  CAS  Google Scholar 

  • Bouzaza, A., Laplanche, A., Marsteau, S.: Adsorption–oxidation of hydrogen sulfide on activated carbon fibers: effect of the composition and the relative humidity of the gas phase. Chemosphere 54, 481–488 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Cal, M.P., Strickler, B.W., Lizzio, A.A.: High temperature hydrogen sulfide adsorption on activated carbon I. Effects of gas composition and metal addition. Carbon 38, 1757–1765 (2000a)

    Article  CAS  Google Scholar 

  • Cal, M.P., Strickler, B.W., Lizzio, A.A., Gangwal, S.K.: High temperature hydrogen sulfide adsorption on activated carbon II. Effects of gas temperature, gas pressure and sorbent regeneration. Carbon 38, 1767–1774 (2000b)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Agueda, V.I., Uguina, M.A., Sotelo, J.L., Brea, P.: Hydrogen recovery from off-gases with nitrogen-rich impurity by pressure swing adsorption using CaX and 5A zeolites. Adsorption 21, 107–123 (2015)

    Article  CAS  Google Scholar 

  • Duraisamy, V., Selvakumar, K., Krishnan, R., Kumar, S.M.S.: Investigation on template etching process of SBA-15 derived ordered mesoporous carbon on electrocatalytic oxygen Reduction reaction. ChemistrySelect 4, 2463–2474 (2019)

    Article  CAS  Google Scholar 

  • Fan, H.L., Shangguan, J., Liang, L.T., Li, C.H., Lin, J.Y.: A comparative study of the effect of clay binders on iron oxide sorbent in the high-temperature removal of hydrogen sulfide. Process Saf. Environ. Prot. 91, 235–243 (2013a)

    Article  CAS  Google Scholar 

  • Fan, H.L., Sun, T., Zhao, Y.P., Shangguan, J., Lin, J.Y.: Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures. Environ. Sci. Technol. 47, 4859–4865 (2013b)

    Article  CAS  PubMed  Google Scholar 

  • Faramawy, S., Zaki, T., Sakr, A.A.-E.: Natural gas origin, composition, and processing: a review. J Nat Gas Sci Eng 34, 34–54 (2016)

    Article  CAS  Google Scholar 

  • Gao, W., Zhou, T., Gao, Y., Louis, B., O’Hare, D., Wang, Q.: Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: a review. J. Energy Chem. 26, 830–838 (2017)

    Article  Google Scholar 

  • Huntson, N.D., Attwood, B.C.: High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption 14, 781–789 (2008)

    Article  CAS  Google Scholar 

  • Jin, X., Malek, A., Farooq, S.: Production of argon from an oxygen-argon mixture by pressure swing adsorption. Ind. Eng. Chem. Res. 45, 5775–5787 (2006)

    Article  CAS  Google Scholar 

  • Jung, S.Y., Jun, H.K., Lee, S.J., Lee, T.J., Ryu, C.K., Kim, J.C.: Improvement of the desulfurization and regeneration properties through the control of pore structures of the Zn–Ti-based H2S removal sorbents. Environ. Sci. Technol. 39, 9324–9330 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Khunpolgrang, J., Yosantea, S., Kongnoo, A., Phalakornkule, C.: Alternative PSA process cycle with combined vacuum regeneration and nitrogen purging for CH4/CO2 separation. Fuel 140, 171–177 (2015)

    Article  CAS  Google Scholar 

  • Luberti, M., Friedrich, D., Brandani, S., Ahn, H.: Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption 20, 511–524 (2014)

    Article  CAS  Google Scholar 

  • Masurel, E., Wang, Z., Szabo, R., Corbet, S.: Optimisation of the rectisol TM design with packing: the rectisol TM demonstration unit. Chem. Eng. Trans. 69, 127–132 (2018)

    Google Scholar 

  • Oliveira, E.L., Carlos, A.G., Rodrigues, A.E.: CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Sep. Purif. Technol. 62, 137–147 (2008)

    Article  CAS  Google Scholar 

  • Qiao, Y., Wang, J., Zhang, Y., Gao, W., Harada, T., Huang, H., Hatton, T.A., Wang, Q.: Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 capture: optimization of the Li/Na/K ratio. Ind. Eng. Chem. Res. 56, 1509–1517 (2017)

    Article  CAS  Google Scholar 

  • Riboldi, L., Bolland, O.: Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants. Int. J. Greenh. Gas Control 39, 1–16 (2015)

    Article  CAS  Google Scholar 

  • Saleman, T.L., Li, G.K., Rufford, T.E., Stanwix, P.L., Chan, K.I., Huang, S.H., May, E.F.: Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption. Chem. Eng. J. 281, 739–748 (2015)

    Article  CAS  Google Scholar 

  • Shi, L., Yang, K., Zhao, Q., Wang, H., Cui, Q.: Characterization and mechanisms of H2S and SO2 adsorption by activated carbon. Energy Fuels 29, 6678–6685 (2015)

    Article  CAS  Google Scholar 

  • Sircar, S., Golden, T.C.: Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000)

    Article  CAS  Google Scholar 

  • Sitthikhankaew, R., Chadwick, D., Assabumrungrat, S., Laosiripojana, N.: Effect of KI and KOH impregnations over activated carbon on H2S adsorption performance at low and high temperatures. Sep. Sci. Technol. 49, 354–366 (2014)

    Article  CAS  Google Scholar 

  • Van Dijk, H.A.J., Walspurger, S., Cobden, P.D., Van den Brinka, R.D., De Vos, F.G.: Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. Int. J. Greenh. Gas Control 5, 505–511 (2011)

    Article  CAS  Google Scholar 

  • Van Selow, E.R., Cobden, P.D., Verbraeken, P.A., Hufton, J.R., Van den Brink, R.W.: Carbon capture by sorption-enhanced water–gas shift reaction process using hydrotalcite-based material. Ind. Eng. Chem. Res. 48, 4184–4193 (2009)

    Article  CAS  Google Scholar 

  • Wang, Q., Luo, J., Zhong, Z., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011)

    Article  CAS  Google Scholar 

  • Webley, P.A.: Adsorption technology for CO2 separation and capture: a perspective. Adsorption 20, 225–231 (2014)

    Article  CAS  Google Scholar 

  • Wu, Y., Yang, Y., Kong, X.M., Li, P., Yu, J.G., Ribeiro, A.M., Rodrigues, A.E.: Adsorption of pure and binary CO2, CH4, and N2 gas components on activated carbon beads. J. Chem. Eng. Data 60, 2684–2693 (2015)

    Article  CAS  Google Scholar 

  • Zhang, F.M., Liu, B.S., Zhang, Y., Guo, Y.H., Wan, Z.Y., Subhan, F.: Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas. J. Hazard. Mater. 233–234, 219–227 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Tian, X., Fu, D.: CO2 removal in tray tower by using AAILs activated MDEA aqueous solution. Energy 161, 1122–1132 (2018)

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, B.S., Zhang, F.M., Zhang, Z.F.: Formation of (FexMn2−x)O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization. J. Hazard. Mater. 248–249, 81–88 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Saleman, T.L., Li, G.K., Xiao, G., Young, B.R., May, E.F.: Non-isothermal numerical simulations of dual reflux pressure swing adsorption cycles for separating N2 + CH4. Chem. Eng. J. 292, 366–381 (2016)

    Article  CAS  Google Scholar 

  • Zhao, C., Chen, X., Anthony, E.J., Jiang, X., Duan, L., Wu, Y., Dong, W., Zhao, C.: Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog. Energy Combust. Sci. 39, 515–534 (2013)

    Article  Google Scholar 

  • Zhou, D., Wang, H., Mao, N., Chen, Y., Zhou, Y., Yin, T., Xie, H., Liu, W., Chen, S., Wang, X.: High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous Mesoporous Mater. 241, 202–209 (2017)

    Article  CAS  Google Scholar 

  • Zhu, X., Wang, Q., Shi, Y., Cai, N.: Layered double oxide/activated carbon-based composite adsorbent for elevated temperature H2/CO2 separation. Int. J. Hydrogen Energy 40, 9244–9253 (2015)

    Article  CAS  Google Scholar 

  • Zhu, X., Shi, Y., Cai, N.: Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption. Appl. Energy 176, 196–208 (2016)

    Article  CAS  Google Scholar 

  • Zou, Y., Vera, M., Rodrigues, A.E.: Adsorption of carbon dioxide at high temperature—a review. Sep. Purif. Technol. 26, 195–205 (2002)

    Article  Google Scholar 

Download references

Acknowledgement

This research was financed by National Key R&D Program of China (Grant No. 2017YFB0601900), the National Natural Science Foundation of China (Grant No. 51806120) and Shanxi Province Science and Technology Major Projects (Grant No. MH2015-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Liu, Z., Shi, Y. et al. Characteristics of activated carbon in elevated-temperature pressure swing adsorption desulfurization. Adsorption 25, 1219–1226 (2019). https://doi.org/10.1007/s10450-019-00115-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00115-4

Keywords

Navigation