Skip to main content
Log in

Nickel ferrite nanoparticles for removal of polar pharmaceuticals from water samples with multi-purpose features

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This paper reports the removal of two widely used pharmaceuticals, namely dipyrone and diclofenac, by magnetic nickel ferrite nanoparticles. A method combining nickel ferrite nanoparticles and high-performance liquid chromatography was applied for the simultaneous monitoring of these polar compounds. The adsorption process of the target compounds on nickel ferrite nanoparticles was performed by using only 800 mg L−1 of the adsorbent at pH 5.8. From the experimental adsorption isotherms, maximum adsorption resulted 31.2 mg g−1 for dipyrone and 16.8 mg g−1 for diclofenac, with dipyrone having a slightly higher affinity for the surface than diclofenac. The presence of dissolved salts in water samples affected the adsorption with removal efficiency remaining between 30–42% for diclofenac and 40–60% for dipyrone. On the other hand, desorption of the drugs was achieved using methanol for diclofenac and ascorbic acid for dipyrone. This research provides the understanding of the adsorption behavior of polar pharmaceuticals on bare nickel ferrite nanoparticles, which promotes the large-scale application of these magnetic nanoparticles to the removal of pharmaceuticals from water samples and their further selective recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agatonovic-Kustrin, S., Zivanovic, L., Zeevi, M., Radulovic, D.: Spectrophotometric study of diclofenac-Fe (III) complex. J. Pharm. Biomed. Anal. 16, 147–153 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Agunbiade, F.O., Moodley, B.: Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the msunduzi river,kwazulu-natal, south africa. Environ. Toxicol. Chem. 35, 36–46 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, S.M., Almeida, C., Neng, N.R., Nogueira, J.M.F.: Bar adsorptive microextraction (BAE) coated with mixed sorbent phases—enhanced selectivity for the determination of non-steroidal anti-inflammatory drugs in real matrices in combination with capillary electrophoresis. J. Chromatogr. B 1008, 115–124 (2016)

    Article  CAS  Google Scholar 

  • Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012)

    Article  CAS  PubMed  Google Scholar 

  • ASTM Standards D1141-Standard Practice for the Preparation of Substitute Ocean Water, ASTM International. http://www.astm.org/Standards/D1141.htm. Accessed 2 Feb 2017

  • Boatright, W.L.: Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid. Food Chem. 196, 1361–1367 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Cashman, J.N.: The mechanisms of action of NSAIDs in analgesia. Drugs 52, 13–23 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Chunming, S.: Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J. Hazard. Mater. 322, 48–84 (2017)

    Article  CAS  Google Scholar 

  • Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., Yu, G.: Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 119, 1033–1039 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Davis, M.B.: Reactions of L-ascorbic acid with transition metal complexes. Polyhedron 11, 285–321 (1992)

    Article  Google Scholar 

  • Decision (E.U.): 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union L78, 40–42

  • De Franco, M.A.E., de Carvalho, C.B., Boneto, M.M., Soares, R.P., Féris, L.A.: Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modeling. J. Clean. Prod. 181, 145–154 (2018)

    Article  CAS  Google Scholar 

  • De Oliveira, T., Guégan, R., Thiebault, T., Milbeau, C.L., Muller, F., Teixeira, V., Giovanela, M., Boussafir, M.: Adsorption of diclofenac onto organoclays: effects of surfactant and environmental (pH and temperature) conditions. J. Hazard. Mater. 323, 558–566 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Feldmann, D.F., Zuehlke, S., Hebere, T.: Occurrence, fate and assessment of polar metamizole (dipyrone) residues in hospital and municipal wastewater. Chemosphere 71, 1754–1764 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Fernández, C., González-Doncel, M., Pro, J., Carbonell, G., Tarazona, J.V.: Occurrence of pharmaceutically active compounds in surface waters of the Henares-Jarama-Tajo river system (Madrid, Spain) and a potential risk characterization. Sci. Total Environ. 408, 543–551 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Gil, A., Santamaría, L., Korili, S.A.: Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloid Interface Sci. Commun. 22, 25–28 (2018)

    Article  CAS  Google Scholar 

  • Goldman, A.: Modern Ferrites Technology, 2nd edn. Springer, New York (2006)

    Google Scholar 

  • Gomez, M.J., Malato, O., Ferrer, I., Aguera, A., Fernández-Alba, A.R.: Solid-phase extraction followed by liquid chromatography–time-of-flight–mass spectrometry to evaluate pharmaceuticals in effluents. A pilot monitoring study. J. Environ. Monit. 9, 718–729 (2007)

    Article  PubMed  Google Scholar 

  • Gorman, J.E., Clydesdale, F.M.: The behavior and stability of iron-ascorbate complexes in solution. J. Food Sci. 48, 1217–1225 (1983)

    Article  CAS  Google Scholar 

  • Gyenge-Szabó, Z., Szoboszlai, N., Frigyes, D., Záray, G., Mihucz, V.G.: Monitoring of four dipyrone metabolites in communal wastewater by solid phase extraction liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 90, 58–63 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Harel, S.: Oxidation of ascorbic acid and metal ions as affected by NaCl. J. Agric. Food Chem. 42, 2402–2406 (1994)

    Article  CAS  Google Scholar 

  • He, L., Zhao, Z., Zhang, Y.: Synthesis of nickel ferrite precursors from low-grade nickel matte. Trans. Nonferrous Met. Soc. China 23, 2422–2430 (2013)

    Article  CAS  Google Scholar 

  • Hedenmalm, K., Spigset, O.: Agranulocytosis and other blood dyscrasias associated with dipyrone (metamizole). Eur. J. Clin. Pharmacol. 58, 265–274 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Cheng, Z.: Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid. Chin. J. Chem. Eng. 23, 1551–1556 (2015)

    Article  CAS  Google Scholar 

  • Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    Article  CAS  Google Scholar 

  • Klug, H.P., Alexander, L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. Wiley, New York (1974)

    Google Scholar 

  • Kostopoulou, M., Nikolaou, A.: Analytical problems and the need for sample preparation in the determination of pharmaceuticals and their metabolites in aqueous environmental matrices. TrAC Trends Anal. Chem. 27, 1023–1035 (2008)

    Article  CAS  Google Scholar 

  • Kozlowska, M., Rodziewicz, P., Utesch, T., Mroginski, M.A., Kaczmarek-Kedziera, A.: Solvation of diclofenac in water from atomistic molecular dynamics simulations—interplay between solute–solute and solute–solvent interactions. Phys. Chem. Chem. Phys. (2018). https://doi.org/10.1039/C7CP08468D

    Article  PubMed  Google Scholar 

  • Larsson, E., al-Hamimi, S., Jönsson, J.: Behaviour of nonsteroidal anti-inflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fiber liquid phase microextraction and liquid chromatography mass spectrometry. Sci. Total Environ. 485–486, 300–308 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Leroy, P., Tournassat, C., Bizi, M.: Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. J. Colloid Interface Sci. 356, 442–453 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Levina, E.O., Penkov, N.V., Rodionova, N.N., Tarasov, S.A., Barykina, D.V., Vener, M.V.: Hydration of the carboxylate group in anti-inflammatory drugs: ATR-IR and computational studies of aqueous solution of sodium diclofenac. ACS Omega 3, 302–313 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loginova, L.P., Konovalova, O.Y.: Test films for test-determinations on the base of reagents, immobilized in gelatinous gel. Talanta 77, 915–923 (2008)

    Article  CAS  Google Scholar 

  • Maaz, K., Karim, S., Mumtaz, A., Hasanain, S.K., Liu, J., Duan, J.L.: Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by coprecipitation route. J. Magn. Magn. Mater. 321, 1838–1842 (2009)

    Article  CAS  Google Scholar 

  • Miller, J.N., Miller, J.C.: Statistics and Chemometrics for Analytical Chemistry, 6th edn. Pearson Education Limited, New York (2010)

    Google Scholar 

  • Ncibi, M.C., Sillanpää, M.: Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater. 298, 102–110 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Paíga, P., Lolić, A., Hellebuyck, F., Santos, L.H.M.L.M., Correia, M., Delerue-Matos, C.: Development of a SPE–UHPLC–MS/MS methodology for the determination of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawater. J. Pharm. Biomed. Anal. 106, 61–70 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Parolini, M., Binelli, A., Provini, A.: Chronic effects induced by ibuprofen on the freshwater bivalve Dreissenapolymorpha. Ecotoxicol. Environ. Saf. 74, 1586–1594 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Pierre, S.C., Schmidt, T., Brenneis, C., Michaelis, M., Geisslinger, G., Scholich, K.: Inhibition of cyclooxygenases by dipyrone. Br. J. Pharmacol. 151, 494–503 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza, R.C., de Vicente, J., Gómez-Lopera, S., Delgado, A.V.: Stability of dispersions of colloidal nickel ferrite spheres. J. Colloid Interface Sci. 242, 306–313 (2001)

    Article  CAS  Google Scholar 

  • Shanmugavel, T., Gokul Raj, G., Ramesh Kumar, G., Rajarajan, G., Saravanan, D.: Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in low temperature regime. J. King Saud Univ. Sci. 27, 176–181 (2015)

    Article  Google Scholar 

  • Sonmez, M., Verisan, C., Voicu, G., Ficai, D., Ficai, A., Oprea, A.E., Vlad, M., Andronescu, E.: Extended release of vitamins from magnetite loaded polyanionic polymeric beads. ‎Int. J. Pharm. 510, 457–464 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Sreeja, V., Jayaprabha, K.N., Joy, P.A.: Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl. Nanosci. 5, 435–441 (2015)

    Article  CAS  Google Scholar 

  • Suarez, W.T., Pessoa-Neto, O.D., Vicentini, F.C., Janegitz, B.C., Faria, R.C., Fatibello-Filho, O.: Flow injection spectrophotometric determination of dipyrone in pharmaceutical formulations using Fe(III) as reagent. Anal. Lett. 44, 340–348 (2011)

    Article  CAS  Google Scholar 

  • Szabó, Z., Szoboszlai, N., Jámbor, É, Gulyás, G., Lóránd, T., Ohmacht, R., Záray, G., Mihucz, V.G.: Determination of four dipyrone metabolites in Hungarian municipal wastewater by liquid chromatography mass spectrometry. Microchem. J. 107, 152–157 (2013)

    Article  CAS  Google Scholar 

  • Teixeira, M.F.S., Dadamos, T.R.L.: An electrochemical sensor for dipyrone determination based on nickel-salen film modified electrode. Procedia Chem. 1, 297–300 (2009)

    Article  CAS  Google Scholar 

  • Tiwari, D., Lalhriatpuia, C., Lee, S.-M.: Hybrid materials in the removal of diclofenac sodium from aqueous solutions: batch and column studies. J. Ind. Eng. Chem. 30, 167–173 (2015)

    Article  CAS  Google Scholar 

  • Wang, L., Li, J., Wang, Y., Zhao, L., Jiang, Q.: Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J. 181–182, 72–79 (2012)

    Article  CAS  Google Scholar 

  • Wang, Y., Ma, J., Zhu, J., Ye, N., Zhang, X., Huang, H.: Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products. Water Res. 92, 104–112 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Wei, H., Deng, S., Huang, Q., Nie, Y., Wang, B., Huang, J., Yu, G.: Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 47, 4139–4147 (2013)

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization Press: Pharmaceuticals in drinking-water, WHO/HSE/WSH/11.05, Switzerland (2011)

  • Xiao, J., Xie, Y., Cao, H.: Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121, 1–17 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Liu, X., Guo, X., Su, M., Xu, T., Song, X.: Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation. Chem. Eng. J. 173, 737–742 (2011)

    Article  CAS  Google Scholar 

  • Zhang, C., Li, Y., Jiang, Y., Wang, T.J.: Size-dependent fluoride removal performance of a magnetic Fe3O4@Fe–Ti adsorbent and its defluoridation in a fluidized bed. Ind. Eng. Chem. Res. 56, 2425–2432 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V. Springer acknowledges the National Scientific and Technical Research Council (CONICET, Argentina) and Universidad Nacional del Sur (Argentina) for the financial support from a research fellowship program. Funds from CONICET, FONCyT and SGCyT-UNS are acknowledged. This work received financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/QUI/50006/2013. L. Barreiros thanks FCT and POPH (Programa Operacional Potencial Humano) for her Post-Doc grant FCT SFRH/BPD/89668/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Springer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Springer, V., Barreiros, L., Avena, M. et al. Nickel ferrite nanoparticles for removal of polar pharmaceuticals from water samples with multi-purpose features. Adsorption 24, 431–441 (2018). https://doi.org/10.1007/s10450-018-9953-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9953-2

Keywords

Navigation