Skip to main content
Log in

Effect of pore characteristics on coalbed methane adsorption in middle-high rank coals

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Gas hazards are still one of the most severe disasters restricting mine safety, and the occurrence of them is heavily dependent on the storage and transportation of methane in coal seams. In order to investigate the influence of pore structure characteristics of middle-high rank coals (V daf  < 25 %) on coalbed methane adsorption, six coal samples of different metamorphism were studied with regard to their surface chemical structure and pore morphological features using Fourier transform infrared (FTIR) spectroscopy, low-pressure nitrogen gas adsorption (LP-N2GA) and scanning electron microscopy (SEM), and their coalbed methane adsorption capacities were also tested. Based on the Langmuir equation, the Langmuir volume and Langmuir pressure were obtained to characterize the adsorption capacity, and the impact of structural parameters of coal samples on coalbed methane adsorption was analyzed. The results indicate that the pore shape varies a lot between coal samples, suggesting the significant heterogeneity on coal surface. The micropores (<10 nm) in coal samples are well-developed, and the pore size distributions from adsorption analysis are multi-modal. Pore characteristics in coal samples is affected by coalification to a large extent. The adsorption volume of gas mainly concentrates in micropores, and the adsorption capacities of different coal samples display remarkable difference. The Langmuir volume (V L) is closely related to micropores, but shows little relationship with mesopores, while the Langmuir pressure (P L) is remarkably affected by both micropores and mesopores. The research results are of great importance for the coalbed methane storage and the accurate prediction of gas emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexeev, A.D., Vasilenko, T.A., Ulyanova, E.V.: Closed porosity in fossil coals. Fuel 78(6), 635–638 (1999)

    Article  CAS  Google Scholar 

  • An, F.H., Cheng, Y.P., Wu, D.M., et al.: The effect of small micropores on methane adsorption of coals from Northern China. Adsorption 19, 83–90 (2013)

    Article  CAS  Google Scholar 

  • Bastos-Neto, M., Canabrava, D.V., Torres, A.E.B., et al.: Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Appl. Surf. Sci. 253(13), 5721–5725 (2007)

    Article  CAS  Google Scholar 

  • Billemont, P., Coasne, B., Weireld, G.D.: Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder. Langmuir 29(10), 3328–3338 (2013)

    Article  CAS  Google Scholar 

  • Billemont, P., Coasne, B., Weireld, G.D.: Adsorption of carbon dioxide-methane mixtures in porous carbons: effect of surface chemistry. Adsorption 20, 453–463 (2014)

    Article  CAS  Google Scholar 

  • Bustin, R.M., Clarkson, C.R.: Geological controls on coalbed methane reservoir capacity and gas content. Int. J. Coal Geol. 38(1), 3–26 (1998)

    Article  CAS  Google Scholar 

  • Cai, Y.D., Liu, D.M., Pan, Z.J., et al.: Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 103, 258–268 (2013)

    Article  CAS  Google Scholar 

  • Chen, X.J., Liu, J., Wang, L., et al.: Influence of pore size distribution of different metamorphic grade of coal on adsorption constant. J. China Coal Soc. 38(2), 294–300 (2013)

    Google Scholar 

  • Chen, Y., Tang, D.Z., Xu, H., et al.: Pore and fracture characteristics of different rank coals in the eastern margin of the Ordos Basin, China. J. Nat. Gas Sci. Eng. 26, 1264–1277 (2015)

    Article  CAS  Google Scholar 

  • Clarkson, C., Bustin, R.M.: The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study: 1. Isotherms and pore volume distributions. Fuel 78, 1333–1344 (1999)

    Article  CAS  Google Scholar 

  • Clarkson, C.R., Solano, N., Bustin, R.M., et al.: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 103, 606–616 (2013)

    Article  CAS  Google Scholar 

  • Derylo-Marczewska, A., Buczek, B., Swiatkowski, A.: Effect of oxygen surface groups on adsorption of benzene derivatives from aqueous solutions onto active carbon samples. Appl. Surf. Sci. 257(22), 9466–9472 (2011)

    Article  CAS  Google Scholar 

  • Dutta, P., Bhowmik, S., Das, S.: Methane and carbon dioxide sorption on a set of coals from India. Int. J. Coal Geol. 85(3), 289–299 (2011)

    Article  CAS  Google Scholar 

  • Faulon, J.L., Mathews, J.P., Carlson, G.A., et al.: Correlation between microporosity and fractal dimension of bituminous coal based on computer-generated models. Energy Fuels 8, 408–414 (1994)

    Article  CAS  Google Scholar 

  • Feng, Y., Yang, W., Wang, N., et al.: Effect of nitrogen-containing groups on methane adsorption behaviors of carbon spheres. J. Anal. Appl. Pyrol. 107, 204–210 (2014)

    Article  CAS  Google Scholar 

  • Fisne, A., Esen, O.: Coal and gas outburst hazard in Zonguldak Coal Basin of Turkey, and association with geological parameters. Nat. Hazards 74(3), 1363–1390 (2014)

    Article  Google Scholar 

  • Flores, R.M., Rice, C.A., Stricker, G.D., et al.: Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: the geologic factor. Int. J. Coal Geol. 76(1), 52–75 (2008)

    Article  CAS  Google Scholar 

  • Gan, H., Nandi, S., Walker Jr., P.: Nature of the porosity in American coals. Fuel 51(4), 272–277 (1972)

    Article  CAS  Google Scholar 

  • Golab, A., Ward, C.R., Permana, A., et al.: High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence. Int. J. Coal Geol. 113, 97–108 (2013)

    Article  CAS  Google Scholar 

  • González-García, P., Centeno, T.A., Urones-Garrote, E., et al.: Microstructure and surface properties of lignocellulosic-based activated carbons. Appl. Surf. Sci. 265, 731–737 (2013)

    Article  Google Scholar 

  • Goodman, A.L., Campus, L.M., Schroeder, K.T.: Direct evidence of carbon dioxide sorption on Argonne premium coals using attenuated total reflectance-fourier transform infrared spectroscopy. Energy Fuels 19(2), 471–476 (2005)

    Article  CAS  Google Scholar 

  • Gotzias, A., Tylianakis, E., Froudakis, G., et al.: Adsorption in micro and mesoporous slit carbons with oxygen surface functionalities. Micropor. Mesopor. Mater. 209, 141–149 (2015)

    Article  CAS  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  • Hao, S.X., Wen, J., Yu, X.P., et al.: Effect of the surface oxygen groups on methane adsorption on coals. Appl. Surf. Sci. 264, 433–442 (2013)

    Article  CAS  Google Scholar 

  • Harpalani, S., Zhao, X.: Microstructure of coal and its influence on flow of gas. Energy Sources 13(2), 229–242 (1991)

    Article  CAS  Google Scholar 

  • He, X.Q.: Rheological Dynamics of Coal or Rock Containing Gas, pp. 1–3. China University of Mining and Technology Press, Xuzhou (1995)

    Google Scholar 

  • He, X.Q., Nie, B.S.: Diffusion mechanism of porous gases in coal seams. J. China Univ. Min. Technol. 30(1), 1–4 (2001)

    CAS  Google Scholar 

  • Hodot, B. B.: Coal and Gas Outburst (Song S. Z., Wang, Y. A., trans.), pp.18–33. Beijing: China Industry Press (1966)

  • Huang, X., Chu, W., Sun, W., et al.: Investigation of oxygen-containing group promotion effect on CO2–coal interaction by density functional theory. Appl. Surf. Sci. 299, 162–169 (2014)

    Article  CAS  Google Scholar 

  • Ji, H., Li, Z., Yang, Y., et al.: Effects of organic micromolecules in coal on its pore structure and gas diffusion characteristics. Transp. Porous Media 107(2), 419–433 (2015)

    Article  CAS  Google Scholar 

  • Keller, J.U., Staudt, R.: Gas Adsorption Equilibria: Experimental Methods and Adsorption Isotherms, p. 422. Springer, New York (2005)

    Google Scholar 

  • Krooss, B.M., Van Bergen, F., Gensterblum, Y., et al.: High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int. J. Coal Geol. 51(2), 69–92 (2002)

    Article  CAS  Google Scholar 

  • Kumar, K.V., Müller, E.A., Rodríguez-Reinoso, F.: Effect of pore morphology on the adsorption of methane/hydrogen mixtures on carbon micropores. J. Phys. Chem. C 116(21), 11820–11829 (2012)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Laxminarayana, C., Crosdale, P.J.: Controls on methane sorption capacity of Indian coals. AAPG Bull 86(2), 201–212 (2002)

    CAS  Google Scholar 

  • Li, Q.Z., Lin, B.Q., Wang, K., et al.: Surface properties of pulverized coal and its effects on coal mine methane adsorption behaviors under ambient conditions. Powder Technol. 270, 278–286 (2015a)

    Article  CAS  Google Scholar 

  • Li, Z.W., Hao, Z.Y., Pang, Y., et al.: Fractal dimensions of coal and their influence on methane adsorption. J. China Coal Soc. 40(4), 863–869 (2015b)

    CAS  Google Scholar 

  • Liu, X.F., Nie, B.S.: Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 182, 314–322 (2016)

    Article  CAS  Google Scholar 

  • Liu, X.Q., Xue, Y., Tian, Z.Y., et al.: Adsorption of CH4 on nitrogen-and boron-containing carbon models of coal predicted by density-functional theory. Appl. Surf. Sci. 285, 190–197 (2013)

    Article  CAS  Google Scholar 

  • Lu, S.Q., Cheng, Y.P., Qin, L.M., et al.: Gas desorption characteristics of the high-rank intact coal and fractured coal. Int. J. Min. Sci. Technol. 25(5), 819–825 (2015)

    Article  CAS  Google Scholar 

  • Mahajan, O.P.: Physical characterization of coal. Powder Technol. 40(1), 1–15 (1984)

    Article  CAS  Google Scholar 

  • Marzec, A.: Towards an understanding of the coal structure: a review. Fuel Process. Technol. 77, 25–32 (2002)

    Article  Google Scholar 

  • Meng, J.Q., Nie, B.S., Zhao, B., et al.: Study on law of raw coal seepage during loading process at different gas pressures. Int. J. Min. Sci. Technol. 25(1), 31–35 (2015)

    Article  CAS  Google Scholar 

  • Milewska-Duda, J., Duda, J.: Hard coal surface heterogeneity in the sorption process. Langmuir 13(5), 1286–1296 (1997)

    Article  CAS  Google Scholar 

  • Nie, B.S., Li, X.C., Cui, Y.J., et al.: Theory and Application of Gas Migration in Coal Seam, pp. 1–10. Science Press, Beijing (2014)

    Google Scholar 

  • Nie, B.S., Liu, X.F., Guo, J.H., et al.: Effect of moisture on gas desorption and diffusion in coal mass. J. China Univ. Min. Technol. 44(5), 781–787 (2015a)

    Google Scholar 

  • Nie, B.S., Liu, X.F., Yang, L.L., et al.: Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 158, 908–917 (2015b)

    Article  CAS  Google Scholar 

  • Nie, B.S., Liu, X.F., Yuan, S.F., et al.: Sorption characteristics of methane among various rank coals: impact of moisture. Adsorption 22(3), 315–325 (2016)

    Article  CAS  Google Scholar 

  • Nodehi, A., Moosavian, M.A., Haghighi, M.N., et al.: A new method for determination of the adsorption isotherm of SDS on polystyrene latex particles using conductometric titrations. Chem. Eng. Technol. 30(12), 1732–1738 (2007)

    Article  CAS  Google Scholar 

  • Ohba, T., Yamamoto, S., Takase, A., et al.: Evaluation of carbon nanopores using large molecular probes in grand canonical Monte Carlo simulations and experiments. Carbon 88, 133–138 (2015)

    Article  CAS  Google Scholar 

  • Okolo, G.N., Everson, R.C., Neomagus, H.W.J.P., et al.: Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques. Fuel 141, 293–304 (2015)

    Article  CAS  Google Scholar 

  • Oschatz, M., Leistner, M., Nickel, W., et al.: Advanced structural analysis of nanoporous materials by thermal response measurements. Langmuir 31, 4040–4047 (2015)

    Article  CAS  Google Scholar 

  • Ottiger, S., Pini, R., Storti, G., et al.: Competitive adsorption equilibria of CO2 and CH4 on a dry coal. Adsorption 14, 539–556 (2008)

    Article  CAS  Google Scholar 

  • Pant, L.M., Huang, H., Secanell, M., et al.: Multi scale characterization of coal structure for mass transport. Fuel 159, 315–323 (2015)

    Article  CAS  Google Scholar 

  • Pashin, J.C.: Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin: implications for exploration and production. Int. J. Coal Geol. 82, 135–146 (2010)

    Article  CAS  Google Scholar 

  • Pini, R., Storti, G., Mazzotti, M.: A model for enhanced coal bed methane recovery aimed at carbon dioxide storage. Adsorption 17(5), 889–900 (2011)

    Article  CAS  Google Scholar 

  • Purevsuren, B., Lin, C.J., Davaajav, Y., et al.: Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks. Water Sci. Technol. 71(8), 1189–1195 (2015)

    Article  CAS  Google Scholar 

  • Ramasamy, S., Sripada, P.P., Khan, M.M., et al.: Adsorption behavior of CO2 in coal and coal char. Energy Fuels 28(8), 5241–5251 (2014)

    Article  CAS  Google Scholar 

  • Rodrigues, C., de Sousa, L.M.: The measurement of coal porosity with different gases. Int. J. Coal Geol. 48(3), 245–251 (2002)

    Article  CAS  Google Scholar 

  • Shafeeyan, M.S., Daud, W.M.A.W., Houshmand, A., et al.: A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrol. 89(2), 143–151 (2010)

    Article  CAS  Google Scholar 

  • Shi, J., Durucan, S.: Gas storage and flow in coalbed reservoirs: implementation of a bidisperse pore model for gas diffusion in coal matrix. SPE Reserv. Eval. Eng. 8, 169–175 (2005)

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., et al.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  • Song, Y.C., Xing, W.L., Zhang, Y., et al.: Adsorption isotherms and kinetics of carbon dioxide on Chinese dry coal over a wide pressure range. Adsorption 21, 53–65 (2015)

    Article  CAS  Google Scholar 

  • Sun, W.J., Feng, Y.Y., Jiang, C.F., et al.: Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coal mine layers. Fuel 155, 7–13 (2015)

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., et al.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    CAS  Google Scholar 

  • Wang, G.C., Ju, Y.W., Bao, Y., et al.: Coal-bearing organic shale geological evaluation of Huainan-Hauibei coalfield, China. Energy Fuels 28, 5031–5042 (2014)

    Article  CAS  Google Scholar 

  • Webley, P.A.: Adsorption technology for CO2 separation and capture: a perspective. Adsorption 20, 225–231 (2014)

    Article  CAS  Google Scholar 

  • Yao, Y.B., Liu, D.M., Tang, D.Z., et al.: Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 73, 27–42 (2008)

    Article  CAS  Google Scholar 

  • Yao, X., Xie, Q., Yang, C., et al.: Additivity of pore structural parameters of granular activated carbons derived from different coals and their blends. Int. J. Min. Sci. Technol. 26(4), 661–667 (2016)

    Article  CAS  Google Scholar 

  • Zhai, C., Xiang, X., Xu, J., et al.: The characteristics and main influencing factors affecting coal and gas outbursts in Chinese Pingdingshan mining region. Nat. Hazards (2016). doi:10.1007/s11069-016-2195-2

    Google Scholar 

  • Zhang, Y., Jing, X., Jing, K., et al.: Study on the pore structure and oxygen-containing functional groups devoting to the hydrophilic force of dewatered lignite. Appl. Surf. Sci. 324, 90–98 (2015)

    Article  CAS  Google Scholar 

  • Ziółkowska, M., Milewska-Duda, J., Duda, J.T.: A qualitative approach to adsorption mechanism identification on microporous carbonaceous surfaces. Adsorption 22, 233–246 (2016)

    Article  Google Scholar 

  • Zou, M.J., Wei, C.T., Zhang, M., et al.: Classifying coal pores and estimating reservoir parameters by nuclear magnetic resonance and mercury intrusion porosimetry. Energy Fuels 27, 3699–3708 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key Program of National Natural Science Foundation of China (No. 51634001), the University of Science and Technology Beijing Foundation (No. 06500033), the National Natural Science Foundation of China (No. 51374216) and the Fundamental Research Funds for the Central Universities (2009kz03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianfeng Liu or Xueqiu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., He, X. Effect of pore characteristics on coalbed methane adsorption in middle-high rank coals. Adsorption 23, 3–12 (2017). https://doi.org/10.1007/s10450-016-9811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9811-z

Keywords

Navigation