Skip to main content
Log in

Na+/Cu2+ ion exchange equilibrium on Zeolite A: a thermodynamic study

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The ion exchange isotherms at 302 K for Na+/Cu2+ and Cu2+/Na+ on zeolite A were determined for six total equivalent concentrations of the external solution, in the range 0.05–2.1 eq/L. Interpolated points from the curves fitted with different isotherms were used in the calculation of the selectivity coefficients. The activity coefficients in the external solution were calculated by means of the Pitzer model. Thermodynamic equilibrium constant values corresponding to different total concentrations of the external solution have been obtained investigating the reaction from both sides. The method of Gaines and Thomas, revised by Soldatov, based on the dependence of the normalized Kielland selectivity quotients on the copper ionic fraction in the zeolite was used in order to obtain the thermodynamic equilibrium constant value. The significance of the thermodynamic equilibrium constant and the reversibility of the process were analyzed, as well as the influence of the non-ideality of the zeolite and solution phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

a :

Coefficient in isotherm equations, thermodynamic activity in solution

\( \bar{a} \) :

Thermodynamic activity in zeolite

b :

Coefficient in isotherm equations

c :

Coefficient in isotherm equation (Keller)

f γ :

Debye–Hückel term, in the equation for the activity coefficient

m :

Molality

r :

R-squared coefficient

x :

Ionic fraction in solution

\( \bar{x} \) :

Ionic fraction in zeolite

z :

Number of elementary charges of an ion

B :

Second virial coefficient in the Debye equation for activity coeffiecients

C :

Third virial coefficient in the Debye equation for activity coeffiecients

F:

Test value for errors

K :

Thermodynamic equilibrium constant

\( \tilde{K} \) :

Corrected selectivity quotient

γ:

Activity coefficient in solution

γ’:

Activity coefficient in zeolite

ν:

Number of ions in an electrolyte

a :

Index for anion

c:

Index for cation

i :

Index for ion

M :

A certain cation

X :

A certain anion

±:

Mean ionic

References

  • Tanaka, Y., Tsuji, M., Tamaura, Y.: ESCA and thermodynamic studies of alkali metal ion exchange reactions on an α-MnO2 phase with the tunnel structure. Phys. Chem. Chem. Phys. 2, 1473–1479 (2000)

    Article  CAS  Google Scholar 

  • Kuronen, M., Harjula, R., Jernström, J., Vestenius, M., Lehto, J.: Effect of the framework charge density on zeolite ion exchange selectivities. Phys. Chem. Chem. Phys. 2, 2655–2659 (2000)

    Article  CAS  Google Scholar 

  • Altschuler, G.N., Ostapova, E.V., Sapozhnikova, L.A., Altshuler, O.G.: Thermodynamics of ion exchange of H+ by Na+ or NH4 + on ion-exchange resins based on C-tetramethylcalix[4] resorcinarene. Russ. Chem. Bull. 53, 2670–2673 (2004)

    Article  Google Scholar 

  • Boyd, G.E., Myers, G.E., Lindenbaum, S.: Thermodynamic calculations of equilibrium constants for ion-exchange reactions between unequally charged cations in polyelectrolyte gels. J. Phys. Chem. 78, 1110–1120 (1974)

    Article  CAS  Google Scholar 

  • Chen, S.H., Chao, K.J., Lee, T.Y.: Lanthanum -NaY zeolite ion exchange. 1. thermodynamics and thermochemistry. IEC Res. 29, 2020–2023 (1990)

    CAS  Google Scholar 

  • de Barros, M.A.S.D., Zola, A.S., Arroyo, P.A., Sousa-Agular, E.F., Granhen Tavares, C.R.: Equilibrium and dynamic ion exchange studies of Cr3+ on zeolites NaA and NaX. Acta Scient. 24, 1619–1625 (2002)

    Google Scholar 

  • Heo, N.H., Kim, Y., Lin, G.C.H., Seff, C.: Three Binary Ion-exchange Isotherms in Zeolite-A: Cs+- Ag+, Ag+- Na+, and NH4 +- Na+. Bull. Korean Chem. Soc. 11, 407–410 (1990)

    CAS  Google Scholar 

  • Valverde, J.L., de Lucas, A., Gonzales, M., Rodriguez, J.F.: Ion-exchange equilibria of Cu2+, Cd2+, Zn2+, and Na+ ions on the cationic exchanger Amberlite IR-120. J. Chem. Eng. Data 46, 1404–1409 (2001)

    Article  CAS  Google Scholar 

  • Carmona, M., Warchoł, J., de Lucas, A., Rodriguez, J.F.: Ion-exchange equilibria of Pb2+, Ni2+, and Cr3+ ions for H+ on Amberlite IR-120 Resin. J. Chem. Eng. Data 53, 1325–1331 (2008)

    Article  CAS  Google Scholar 

  • Borge, G., Arana, G., Fernandez, L.A., Madariaga, J.M.: Determination of ion exchange equilibrium constants of strongly acidic resins with alkaline-earth metals by means of the potentiometric titrations technique. Talanta 48, 91–102 (1999)

    Article  CAS  Google Scholar 

  • Sherry, H.S., Walton, H.F.: The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A. J. Phys. Chem. 71, 1457–1465 (1967)

    Article  CAS  Google Scholar 

  • Miyata, S.: Anion exchange properties of Hydracalcite-like compounds. Clays Clay Miner. 31, 305–311 (1983)

    Article  CAS  Google Scholar 

  • de Lucas, A., Martínez, P., Cañizares, J.: Zarca Díaz, Binary ion exchange equilibrium for Ca2+, Mg2+, K+, Na+ and H+ ions on Amberlite IR-120. Chem. Eng. Technol. 16, 35–39 (1993)

    Article  Google Scholar 

  • Barrer, R.M., Klinowski, J.: Ion exchange involving several groups of homogeneous sites. J. Chem. Soc. Faraday Trans. 1(68), 73–87 (1972)

    Article  Google Scholar 

  • Barrer, R.M., Rees, L.V.C., Shamsuzzoha, M.: Thermochemistry and thermodynamics of ion exchange in a near-faujasite. J. Inorg. Nucl. Chem. 28, 629–643 (1966)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Davies, J.A., Rees, L.V.C.: Thermodynamics and thermochemistry of cation exchange in zeolite Y. J. Inorg. Nucl. Chem. 30, 3333–3349 (1968)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Davies, J.A., Rees, L.V.C.: Thermodynamics and thermochemistry of cation exchange in chabazite. J. Inorg. Nucl. Chem. 31, 219–232 (1969)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Klinowski, J.: Ion exchange in mordenite. J. Chem. Soc., Faraday Trans. 70, 2362–2367 (1974a)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Klinowski, J.: Ion-exchange selectivity and electrolyte concentration. J. Chem. Soc. Faraday Trans. 1(70), 2080–2091 (1974b)

    Article  Google Scholar 

  • Adams, C.J., Araya, A., Cunningham, K.J., Franklin, K.R., White, I.F.: Measurement and prediction of CaNa ion-exchange equilibrium in maximum aluminium P (MAP), a zeolite with the GIS framework topology. J. Chem. Soc. Faraday Trans. 93, 499–503 (1997)

    Article  CAS  Google Scholar 

  • Tagami, L., dos Santos, O.A.A., Sousa-Agular, E.F., Arroyo, P.A., de Barros, M.A.S.D.: NaY and CrY zeolites ion exchange thermodynamics. Acta Scient. 23, 1351–1357 (2001)

    CAS  Google Scholar 

  • Sherry, H.S.: The ion exchange properties of Zeolites. IV.Alkaline earth ion exchange in the synthetic Zeolites Linde X and Y. J. Phys. Chem. 72, 4086–4093 (1968)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Klinowski, J., Sherry, H.S.: Zeolite exchangers. thermodynamic treatment when not all ions are exchangeable. J. Chem. Soc. Faraday Trans. 2(69), 1669–1676 (1973)

    Article  Google Scholar 

  • Vansant, E.F., Uytterhoeven, J.B.: Ion exchange in synthetic zeolites. Part 2. - thermodynamic formalism for incomplete exchange. Trans. Faraday Soc. 67, 2961–2969 (1971)

    Article  CAS  Google Scholar 

  • Singare, P.U., Lokhande, R.S., Samant, N.: Studies of Uni-univalent ion exchange reactions using strongly acidic cation exchange resin Amberlite IR-120. Nat. Sci. 1, 124–128 (2008a)

    Google Scholar 

  • Singare, P.U., Lokhande, R.S., Prabhavalkar, T.S.: Ion exchange equilibrium for some Uni-univalent and Uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D. Bull. Chem. Soc. Ethiop. 22, 415–421 (2008b)

    CAS  Google Scholar 

  • Singare, P.U., Lokhande, R.S., Patil, M.G.: Ion exchange equilibrium studies using strongly acidic cation exchange resins Duolite ARC 9351, RASAYAN. J. Chem. 2, 566–571 (2009)

    CAS  Google Scholar 

  • Lokhande, R.S., Singare, P.U., Patil, A.B.: A study of ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Indion-830 (Type 1). Russ. J. Phys. Chem. 81, 2059–2063 (2007)

    Article  CAS  Google Scholar 

  • Lokhande, R.S., Singare, P.U., Dole, M.H.: Study on ion exchange equilibrium for some Uni_univalent and Uni_divalent reaction systems using strongly basic anion_exchange resin Duolite A_113. Russ. J. Phys. Chem. A 83, 2313–2317 (2009)

    Article  CAS  Google Scholar 

  • Ioannidis, S., Anderko, A., Sanders, S.: Internally consistent representation of binary ion exchange equilibria. Chem. Eng. Sci. 55, 2687–2698 (2000)

    Article  CAS  Google Scholar 

  • Pabalan, T.R.: Thermodynamics of ion exchange between clinoptilolite and aqueous solutions of Na+/K+ and Na+/Ca2+. Geochim. Cosmochim. Acta 58, 4573–4590 (1994)

    Article  CAS  Google Scholar 

  • Ferapontov, N.B., Gorshkov, V.I., Parbuzina, L.R., Struskovskaia, N.L., Gagarin, A.N.: Thermodynamics of interphase equilibrium in system ion exchanger-solution of low molecular weight electrolyte. React. Funct. Polym. 66, 1749–1756 (2006)

    Article  CAS  Google Scholar 

  • Ferapontov, N.B., Parbuzina, L.R., Gorshkov, V.I., Strusovskaya, N.L., Gagarin, A.N.: Interaction of cross-linked polyelectrolytes with solutions of low-molecular-weight electrolytes. React. Funct. Polym. 45, 145–153 (2000)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Meier, W.M.: Exchange equilibria in a synthetic crystalline exchanger. Trans. Faraday Soc. 55, 130–141 (1959)

    Article  CAS  Google Scholar 

  • Ziyath, A.M., Mahbub, P., Goonetilleke, A., Adebajo, M.O., Kokot, S., Oloyede, A.: Influence of physical and chemical parameters on the treatment of heavy metals in polluted stormwater using Zeolite—a review. J. Water Resour Prot. 3, 758–767 (2011)

    Article  CAS  Google Scholar 

  • Helfferich, F.: Ion Exchange. Dover Publication Inc., New York (1995)

    Google Scholar 

  • Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Amer. Chem. Soc. 96(18), 5701–5707 (1974)

    Article  CAS  Google Scholar 

  • Gaines, G.L., Thomas, H.C.: Adsorption Studies on Clay Minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21, 714–718 (1953)

    Article  CAS  Google Scholar 

  • Soldatov, V.S.: Application of basic concepts of chemical thermodynamics to ion exchange equilibria. React. Funct. Polym. 27, 95–106 (1995)

    Article  CAS  Google Scholar 

  • Ekedahl, E., Hogfeldt, E., Sillen, L.G.: Activities of the Components in Ion exchangers. Acta Chem. Scand. 4, 556–558 (1950a)

    Article  CAS  Google Scholar 

  • Ekedahl, E., Hogfeldt, E., Sillen, L.G.: Activities of the components in ion exchangers with multivalent ions. Acta Chem. Scand. 4, 828–830 (1950b)

    Article  Google Scholar 

  • Wilson, G.M.: Vapor-liquid equilibria XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  CAS  Google Scholar 

  • Smith, R.P., Woodburn, E.T.: Prediction of multicomponent ion exchange equilibria for the ternary system SO 42−-NO 3−-Cl from data of binary systems. AIChE J. 24(4), 577–587 (1978)

    Article  CAS  Google Scholar 

  • Ruvarac, A.L., Petković, D.M.: Determination of the thermodynamic equilibrium constants of ion exchange processes. J. Chem. Soc. Dalton Trans. 10, 2565–2567 (1988)

    Article  Google Scholar 

  • Ruvarac, A.L.: Determination of the thermodynamic equilibrium constants of ion exchange processes. Mat. Chem. Phys. 35, 247–249 (1993)

    Article  CAS  Google Scholar 

  • Adolphs, J., Setzer, M.J.: Energetic classification of adsorption isotherms. J. Colloid Interface Sci. 184, 443–448 (1996)

    Article  CAS  Google Scholar 

  • Townsend, R.P.: Ion Exchange in Zeolites. In: Van Bekkum, H., Flanigen, E.M., Jansen, J.C. (eds.) Introduction to zeolite science and practice. Elsevier, Amsterdam (1991)

    Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  • Assessment Model for Environmental Systems: Version 4.0 User’s Manual (1999) United States Environmental Protection Agency, Office of Research and Development, Washington DC.

  • Rida, K., Goutas, K., Medjetena, I.: Etude de l’élimination des ions Cu (II) de la solution aqueuse par sorption sur la Zéolithe A. Canad. J. Chem. Eng. 90, 1269–1277 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to St. Perişanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perişanu, S., Oancea, AM. Na+/Cu2+ ion exchange equilibrium on Zeolite A: a thermodynamic study. Adsorption 21, 343–351 (2015). https://doi.org/10.1007/s10450-015-9674-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9674-8

Keywords

Navigation