Skip to main content
Log in

Energy stable and maximum bound principle preserving schemes for the Allen-Cahn equation based on the Saul’yev methods

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The energy dissipation law and maximum bound principle are significant characteristics of the Allen-Chan equation. To preserve discrete counterpart of these properties, the linear part of the target system is usually discretized implicitly, resulting in a large linear or nonlinear system of equations. The fast Fourier transform is commonly used to solve the resulting linear or nonlinear systems with computational costs of \(\varvec{\mathcal {O}(M^d \text {log} M)}\) at each time step, where \(\varvec{M}\) is the number of spatial grid points in each direction, and \(\varvec{d}\) is the dimension of the problem. Combining the Saul’yev methods and the stabilization techniques, we propose and analyze novel first- and second-order numerical schemes for the Allen-Cahn equation in this paper. In contrast to the traditional methods, the proposed methods can be solved by components, requiring only \(\varvec{\mathcal {O}(M^d)}\) computational costs per time step. Additionally, they preserve the maximum bound principle and original energy dissipation law at the discrete level. We also propose rigorous analysis of their consistency and convergence. Numerical experiments are conducted to confirm the theoretical analysis and demonstrate the efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Behnel, S., Bradshaw, R.W., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: Cython: the best of both worlds. Comput. Sci. Eng. 13, 31–39 (2011)

  2. Chen, X., Qian, X., Song, S.: Fourth-order structure-preserving method for the conservative Allen-Cahn equation. Adv. Appl. Math. Mech. 15, 159–181 (2023)

    Article  MathSciNet  Google Scholar 

  3. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Engrg. 367, 113030 (2020)

    Article  MathSciNet  Google Scholar 

  4. Cheng, Q., Liu, C., Shen, J.: Generalized SAV approaches for gradient systems. J. Comput. Appl. Math. 394, 113532 (2021)

    Article  MathSciNet  Google Scholar 

  5. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  6. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63, 317–359 (2021)

    Article  MathSciNet  Google Scholar 

  7. Elliot, C., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  8. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equations. Mater. Res. Soc. Sympos. Proc. 529, 39–46 (1998)

    Article  MathSciNet  Google Scholar 

  9. Feng, X., Tang, T., Yang, J.: Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models. East Asian J. Appl. Math. 3(1), 59–80 (2013)

    Article  MathSciNet  Google Scholar 

  10. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10(1), 56–61 (1942)

    Article  Google Scholar 

  11. Furihata, D., Matsuo, T.: Discrete variational derivative method. A Structure-Preserving Numerical Method for Partial Differential Equations. Chapman and Hall/CRC, 1st edition, (2011)

  12. Gong, Y., Hong, Q., Wang, Q.: Supplementary variable method for thermodynamically consistent partial differential equations. Comput. Methods Appl. Mech. Engrg. 381, 113746 (2021)

    Article  MathSciNet  Google Scholar 

  13. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)

    Article  MathSciNet  Google Scholar 

  14. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn-Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer-Verlag, Berlin (2006)

    Google Scholar 

  16. Hou, D., Ju, L., Qiao, Z.: A linear second-order maximum bound principle-preserving BDF scheme for the Allen-Cahn equation with a general mobility. Math. Comp. 92, 2515–2542 (2023)

    Article  MathSciNet  Google Scholar 

  17. Hou, T., Leng, H.: Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite differ- ence scheme for Allen-Cahn equations. Appl. Math. Lett. 102, 106150 (2020)

    Article  MathSciNet  Google Scholar 

  18. Hou, T., Xiu, D., Jiang, W.: A new second-order maximum-principle preserving finite difference scheme for Allen-Cahn equations with periodic boundary conditions. 104, 106265 (2020)

  19. Huang, J., Yang, C., Ying, W.: Parallel energy-stable solver for a coupled Allen-Cahn and Cahn-Hilliard system. SIAM J. Sci. Comput. 42, C294–C312 (2020)

    Article  MathSciNet  Google Scholar 

  20. Huggins, M.L.: Solutions of long cain compounds. J. Chem. Phys. 9(5), 440 (1941)

    Article  Google Scholar 

  21. Jiang, C., Cui, J., Qian, X., Song, S.: High-order linearly implicit structure-preserving exponential integrators for the nonlinear Schrödinger equation. J. Sci. Comput. 90, 27 (2020)

    Google Scholar 

  22. Jiang, C., Wang, Y., Cai, W.: A linearly implicit energy-preserving exponential integrator for the nonlinear Klein-Gordon equation. J. Comput. Phys. 419, 18 (2020)

    Article  MathSciNet  Google Scholar 

  23. Ju, L., Li, X., Qiao, Z.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. J. Comput. Phys. 439, 110405 (2021)

    Article  MathSciNet  Google Scholar 

  24. Ju, L., Li, X., Qiao, Z.: Generalized SAV-exponential integrator schemes for Allen-Cahn type gradient flows. SIAM J. Numer. Anal. 60(4), 1905–1931 (2022)

    Article  MathSciNet  Google Scholar 

  25. Ju, L., Li, X., Qiao, Z.: Stabilized exponential-SAV schemes preserving energy dissipation Law and maximum bound principle for the Allen–Cahn type equations. J. Sci. Comput. 92, (2022)

  26. Li, D., Quan, C., Xu, J.: Stability and convergence of Strang splitting. Part I: Scalar Allen-Cahn equation. J. Comput. Phy. 458, 111087 (2022)

    Article  MathSciNet  Google Scholar 

  27. Li, D., Sun, W.: Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations. J. Sci. Comput. 83, 17 (2020)

    Article  MathSciNet  Google Scholar 

  28. Li, J., Lan, R., Cai, Y., Ju, L., Wang, X.: Second-order semi-Lagrange exponential time difference method with enhanced error estimate for the convective Allen-Cahn equations. J. Sci. Comput. 97, 7 (2023)

    Article  Google Scholar 

  29. Li, X., Gong, Y., Zhang, L.: Linear high-order energy-preserving schemes for the nonlinear Schrödinger equation with wave operator using the scalar auxiliary variable approach. J. Sci. Comput. 88, 25 (2021)

    Article  Google Scholar 

  30. Liao, H., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58(4), 2294–2314 (2020)

    Article  MathSciNet  Google Scholar 

  31. Nan, C., Song, H.: The high-order maximum-principle-preserving integrating factor Runge-Kutta methods for nonlocal Allen-Cahn equation. J. Comput. Phys. 456, 111028 (2022)

    Article  MathSciNet  Google Scholar 

  32. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 22, 395–1414 (2011)

    MathSciNet  Google Scholar 

  33. Saul’yev, V.K.: On a method of numerical integration of a diffusion equation. Dokl Akad Nauk SSSR(in Russian) 115, 1077–1079 (1957)

    MathSciNet  Google Scholar 

  34. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  35. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  36. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  37. Shin, J., Lee, H.G., Lee, J.-Y.: Unconditionally stable methods for gradient flow using convex splitting Runge-Kutta scheme. J. Comput. Phys. 347, 367–381 (2017)

    Article  MathSciNet  Google Scholar 

  38. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)

    MathSciNet  Google Scholar 

  39. Thomas, L.: Elliptic problems in linear difference equations over a network. Watson Sc. Comp. Lab. Rep. Columbia University, New York. (1949)

  40. Xiao, X., Feng, X.: A second-order maximum bound principle preserving operator splitting method for the Allen-Cahn equation with applications in multi-phase systems. Math. Comput. Simulation 202, 36–58 (2022)

    Article  MathSciNet  Google Scholar 

  41. Xiao, X., Feng, X., Yuan, J.: The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 22, 2857–2877 (2017)

    MathSciNet  Google Scholar 

  42. Yang, J., Du, Q., Zhang, W.: Uniform \(L^p\)-bound of the Allen-Cahn equation and its numerical discretization. Int. J. Numer. Anal. Model. 15, 213–227 (2018)

    MathSciNet  Google Scholar 

  43. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  44. Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 135, 691–712 (2017)

    Article  MathSciNet  Google Scholar 

  45. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation. Appl. Numer. Math. 161, 372–390 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (12171245, 11971242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Enrique Zuazua

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Wang, Y. & Cai, W. Energy stable and maximum bound principle preserving schemes for the Allen-Cahn equation based on the Saul’yev methods. Adv Comput Math 50, 34 (2024). https://doi.org/10.1007/s10444-024-10142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10142-7

Keywords

Mathematics Subject Classification (2010)

Navigation