Skip to main content
Log in

Fast numerical integration of highly oscillatory Bessel transforms with a Cauchy type singular point and exotic oscillators

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we propose an efficient hybrid method to calculate the highly oscillatory Bessel integral \(\int _{0}^{1} \frac{f(x)}{x-\tau } J_{m} (\omega x^{\gamma } )\textrm{d}x\) with the Cauchy type singular point, where \( 0< \tau < 1, m \ge 0, 2\gamma \in N^{+}. \) The hybrid method is established by combining the complex integration method with the Clenshaw– Curtis– Filon– type method. Based on the special transformation of the integrand and the additivity of the integration interval, we convert the integral into three integrals. The explicit formula of the first one is expressed in terms of the Meijer G function. The second is computed by using the complex integration method and the Gauss– Laguerre quadrature rule. For the third, we adopt the Clenshaw– Curtis– Filon– type method to obtain the quadrature formula. In particular, the important recursive relationship of the required modified moments is derived by utilizing the Bessel equation and the properties of Chebyshev polynomials. Importantly, the strict error analysis is performed by a large amount of theoretical analysis. Our proposed methods only require a few nodes and interpolation multiplicities to achieve very high accuracy. Finally, numerical examples are provided to verify the validity of our theoretical analysis and the accuracy of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, NewYork (2003)

    Book  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C (1964)

    Google Scholar 

  3. Arfken, G.: Mathematical Methods for Physicists, third. Academic Press, Orlando, FL (1985)

    Google Scholar 

  4. Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 27(2), 553–574 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bateman, H., Erdélyi, A.: Higher Transcendental Functions, I. Krieger, New York (1981)

    Google Scholar 

  6. Brunner, H.: Open problems in the computational solution of Volterra functional equations with highly oscillatory kernels. Effective Computational Methods for Highly Oscillatory Solutions, Isaac Newton Institute, HOP (2007)

    Google Scholar 

  7. Brunner, H.: On the numerical solution of first-kind Volterra integral equations with highly oscillatory kernels, Isaac Newton Institute. HOP: Highly Oscillatory Problems: From Theory to Applications, pp 13–17 (2010)

  8. Chen, R.: Numerical approximations to integrals with a highly oscillatory Bessel kernel. Appl. Numer. Math. 62(5), 636–648 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chen, R.: Fast integration for Cauchy principal value integrals of oscillatory kind. Acta Appl. Math. 123(1), 21–30 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chen, R.: On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions. J. Comput. Appl. Math. 250, 107–121 (2013)

    Article  MathSciNet  Google Scholar 

  11. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, second ed., Academic Press (1984)

  12. Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9(1), 24–82 (1967)

    Article  MathSciNet  Google Scholar 

  13. Hasegawa, T., Sugiura, H.: Uniform approximation to finite Hilbert transform of oscillatory functions and its algorithm. J. Comput. Appl. Math. 358, 327–342 (2019)

    Article  MathSciNet  Google Scholar 

  14. He, G., Xiang, S.: An improved algorithm for the evaluation of Cauchy principal value integrals of oscillatory functions and its application. J. Comput. Appl. Math. 280, 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  15. https://functions.wolfram.com/HypergeometricFunctions/HypergeometricPFQ/06/02/02/

  16. http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/07/0004/

  17. http://functions.wolfram.com/07.34.06.0031.02

  18. Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)

    Article  MathSciNet  Google Scholar 

  19. Kang, H., Zhang, M.: Numerical evaluation and analysis of highly oscillatory singular Bessel transforms with a particular oscillator. J. Comput. Appl. Math. 420, 114835 (2023)

    Article  MathSciNet  Google Scholar 

  20. Keller, P.: A practical algorithm for computing Cauchy principal value integrals. Appl. Math. Comput. 218(9), 4988–5001 (2012)

    MathSciNet  Google Scholar 

  21. Lozier, D.W.: Numerical Solution of Linear Difference Equations. Report NBSIR 80-1976, National Bureau of Standerds. Washington, D.C (1980)

  22. Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York (1962)

    Google Scholar 

  23. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, New York (2003)

    Google Scholar 

  24. Okecha, G.E.: Quadrature formulae for Cauchy principal value integrals of oscillatory kind. Math. Comp. 49(179), 259–268 (1987)

    Article  MathSciNet  Google Scholar 

  25. Oliver, J.: The numerical solution of linear recurrence relations. Numer. Math. 11, 349–360 (1968)

    Article  MathSciNet  Google Scholar 

  26. Oreshkin, B.: http://www.mathworks.com/matlabcentral/fileexchange/31490-meijerg/content/MeijerG/MeijerG.m

  27. Piessens, R., Branders, M.: Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT Numer. Math. 23, 370–381 (1983)

    Article  MathSciNet  Google Scholar 

  28. Wang, Z., Guo, D.: Introduction to Special Functions. Peking University Press, Beijing (2000)

    Google Scholar 

  29. Wang, H., Xiang, S.: Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput. 215(5), 1886–1894 (2009)

    MathSciNet  Google Scholar 

  30. Wang, H., Xiang, S.: On the evaluation of Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math. 234(1), 95–100 (2010)

    Article  MathSciNet  Google Scholar 

  31. Wang, H.: A unified framework for asymptotic analysis and computation of finite Hankel transform. J. Math. Anal. Appl. 483, 123640 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wang, H., Zhang, L., Huybrechs, D.: Asymptotic expansions and fast computation of oscillatory Hilbert transforms. Numer. Math. 123, 709–743 (2013)

    Article  MathSciNet  Google Scholar 

  33. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)

    Google Scholar 

  34. Xiang, S.: Numerical analysis of a fast integration method for highly oscillatory functions. BIT Numer. Math. 47(2), 469–482 (2007)

    Article  MathSciNet  Google Scholar 

  35. Xiang, S., Gui, W., Mo, P.: Numerical quadrature for Bessel transformations. Appl. Numer. Math. 58(9), 1247–1261 (2008)

    Article  MathSciNet  Google Scholar 

  36. Xiang, S., Wang, H.: Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comp. 79(270), 829–844 (2010)

    Article  MathSciNet  Google Scholar 

  37. Xiang, S., Cho, Y.J., Wang, H., Brunner, H.: Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications. IMA J. Numer. Anal. 31, 1281–1314 (2011)

    Article  MathSciNet  Google Scholar 

  38. Xiang, S., Cho, Y.J., Wang, H., Brunner, H.: Erratum to " Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications " ( IMA Journal of Numerical Analysis (2011) 31: 1281–1314). IMA J. Numer. Anal. 33, 1480–1483 (2013)

    Article  MathSciNet  Google Scholar 

  39. Xu, Z., Xiang, S., He, G.: Efficient evaluation of oscillatory Bessel Hilbert transforms. J. Comput. Appl. Math. 258, 57–66 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the editors’ and referees’ helpful suggestions and insightful comments, which helped improve the manuscript significantly.

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant Nos. LY22A010002, LY18A010009, National Natural Science Foundation of China (Grant Nos. 11301125, 12001280, 11971138), Research Foundation of Hangzhou Dianzi University (Grant No. KYS075613017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Kang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Akil Narayan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Xu, Q. & Liu, G. Fast numerical integration of highly oscillatory Bessel transforms with a Cauchy type singular point and exotic oscillators. Adv Comput Math 50, 40 (2024). https://doi.org/10.1007/s10444-024-10134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10134-7

Keywords

Mathematics Subject Classification (2010)

Navigation