Skip to main content
Log in

Adaptive and local regularization for data fitting by tensor-product spline surfaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose to employ a non-constant regularization weight function (RWF) for data fitting via least-squares tensor-product (TP) spline fitting. In the first part of the paper, we formulate the discrete and the continuous version of the problem, and we investigate the influence of the degree of the RWF — which is also chosen as a TP spline function — in the latter situation. The second part presents two methods for automatically generating non-constant RWFs in the discrete situation. These methods are shown to be particularly useful if holes or features are present in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Boor, C., Fix, G.: Spline approximation by quasiinterpolants. J. Approx. Theory 8(1), 19–45 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bracco C, Giannelli C, Großmann D, Imperatore S, Mokriš D: Sestini A THB-spline approximations for turbine blade design with local B-spline approximations. In: Mathematical and Computational Methods for Modelling, Approximation and Simulation, pp 63–82. Springer (2022)

  3. Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, Evans TR: Reconstruction and representation of 3D objects with radial basis functions. In: Proc. 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01), pp 67–76. (2001)

  4. Chu, B.D., Martin, F., Reif, U.: Stabilization of spline bases by extension. Adv. Comp. Math. 48, 1–21 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deng, C., Lin, H.: Progressive and iterative approximation for least squares B-spline curve and surface fitting. Comput. Aided Des. 47, 32–44 (2014)

    Article  MathSciNet  Google Scholar 

  6. Floater MS, Hormann K: Surface parameterization: a tutorial and survey. Adv. Multires. Geo. Model. pp 157–186 (2005)

  7. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comp. Math. 40, 459–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Von Golitschek M, Schumaker LL: Data fitting by penalized least squares. In: Algorithms for Approximation II, Chapman and Hall, London, pp 210–227 (1990)

  9. Greiner G, Hormann K: Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Surface Fitting and Multiresolution Methods, Vanderbilt University Press, pp 163–172 (1997)

  10. Hoppe H, DeRose T, Duchamp T, Halstead M, Jin H, McDonald J, Schweitzer J, Stuetzle W: Piecewise smooth surface reconstruction. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp 295–302 (1994)

  11. Hoschek, J.: Intrinsic parametrization for approximation. Comput. Aided Geom. Des. 5, 27–31 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoschek J, Jüttler B: Techniques for fair and shape–preserving surface fitting with tensor–product B-splines. In: Shape Preserving Representations in Computer Aided Design (J.M. Peña, ed.). pp 163–185, Nova Science Publishers, New York, NY (1999)

  13. Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. AK Peters, Ltd (1993)

    MATH  Google Scholar 

  14. Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17, 135–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive CAD model (re-) construction with THB-splines. Graph. Models. 76(5), 273–288 (2014)

    Article  Google Scholar 

  16. Piegl L, Tiller W: The NURBS book. Springer Science & Business Media (1996)

  17. Von Golitschek, M., Schumaker, L.L.: Penalized least squares fitting. Serdica. Math. J. 28, 329–348 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Wang, J., Yang, Z., Jin, L., Deng, J., Chen, F.: Parallel and adaptive surface reconstruction based on implicit PHT-splines. Comput. Aided Geom. Des. 28, 463–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, H., Wang, W., Sun, J.: Control point adjustment for B-spline curve approximation. Comput. Aided Des. 36(7), 639–652 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Großmann, Thomas Takacs and the reviewers for their helpful suggestions on how to improve this paper.

Funding

This work is supported by European Research Council through the CHANGE project (GA No. 694515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Mokriš.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Larry L. Schumaker.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. A bound on the Sobolev seminorm of the truncated spline projection

Appendix. A bound on the Sobolev seminorm of the truncated spline projection

The proof of Theorem 1 relies on a bound on the Sobolev seminorm of the truncated spline projection. We use this Appendix to present this result, together with its proof.

Proposition 1

We consider again the assumptions of Theorem 1. The truncated spline projection defined in (5) satisfies

$$\begin{aligned} | u_h|_{W^{2,2}(\varOmega ),\lambda }^2 \le \varepsilon C_3 h^{2p+2}\ , \end{aligned}$$

where the constant \(C_3\) depends on f, \(\omega\), p and q.

Before presenting the proof, we derive an auxiliary result.

Lemma 3

Given a point \({\textbf {t}}_0\in [0,1]^d\), we consider multi-indices \({\textbf {i}}_h\) satisfying

$$\begin{aligned} {\textbf {t}}_0 \in supp B_{{\textbf {i}}_h,h}^{p} \end{aligned}$$

that are indexed by a zero sequence of mesh sizes h. The values of the associated linear coefficient functionals converge to the value of the function at this point,

$$\begin{aligned} \underset{h\rightarrow 0}{\lim } \mu ^{p}_{{\textbf {i}}_h,h}(\phi ) = \phi ({\textbf {t}}_0) \end{aligned}$$

if \(\phi\) is \(C^2\) smooth.

Proof

For each mesh size h we denote with \(\Delta _h\) the d-dimensional knot span that contains \({\textbf {t}}_0\) (or one of them, if several knot spans with this property exist). As the first step, we exploit the linearity of the coefficient functionals and the equivalence of the norms on the finite-dimensional space of polynomials of degree p to conclude that

$$\begin{aligned}{} & {} \underset{{\textbf {i}}: \Delta _h\subseteq \text {supp} B_{{\textbf {i}},h}^{p}}{\max } |\mu _{{\textbf {i}},h}^{p}(\phi )-\phi ({\textbf {t}}_0)| = \underset{{\textbf {i}}: \Delta _h\subseteq \text {supp} B_{{\textbf {i}},h}^{p}}{\max } |\mu _{{\textbf {i}},h}^{p}\big (\phi -\phi ({\textbf {t}}_0)\big )| \\{} & {} \le \frac{C_9}{h^d} \Big \Vert \sum \limits _{0\le {\textbf {i}} \le {{\textbf {m}}}_h + p} B_{{\textbf {i}},h}^{p}({\textbf {t}}) \mu _{{\textbf {i}},h}^{p}\big (\phi -\phi ({\textbf {t}}_0)\big ) \Big \Vert _{L^2(\Delta _h)} = \frac{C_9}{h^d} \Big \Vert \varPi ^p_h(\phi ) - \phi ({\textbf {t}}_0) \Big \Vert _{L^2(\Delta _h)}, \end{aligned}$$

where the existence of the h-independent constant \(C_9\) is guaranteed by the quasi–uniformity of the knot vectors. The factor \(1/h^d\) is due to the integration over the knot span that is involved on the definition of the \(L^2\) norm on \(\Delta _h\). Secondly we apply the triangle inequality, arriving at

$$\begin{aligned} \Big \Vert \varPi ^p_h(\phi ) - \phi ({\textbf {t}}_0) \Big \Vert _{L^2(\Delta _h)}&\le \Big \Vert \varPi ^p_h(\phi ) - \phi \Big \Vert _{L^2(\Delta _h)} + \Big \Vert \phi - \phi ({\textbf {t}}_0) \Big \Vert _{L^2(\Delta _h)}. \end{aligned}$$

While we may use the inequality (2) with \(\ell =p\) and domain \(\Delta _h\) to bound the first term on the right–hand side, the second term can be estimated via the first derivatives, which gives

$$\begin{aligned} | \phi ({\textbf {t}}) - \phi ({\textbf {t}}_0) | \le | h \underset{{\textbf {t}}'\in \Delta _h}{\max }\Vert \nabla \phi ({\textbf {t}}')\Vert \, | \quad \text {if} \quad {\textbf {t}}\in \Delta _h \end{aligned}$$

since \(\phi\) is required to be \(C^2\) smooth. Finally we complete the proof by combining these observations to obtain

$$\begin{aligned} |\mu ^{p}_{{\textbf {i}}_h,h}(\phi )-\phi ({\textbf {t}}_0) |\le & {} \underset{{\textbf {i}}: \Delta _h\subseteq \text {supp} B_{{\textbf {i}},h}^{p}}{\max } |\mu _{{\textbf {i}},h}^{p}(\phi )-\phi ({\textbf {t}}_0)| \\\le & {} \frac{C_{9}}{h^d} \big (C_1 h \underbrace{| \phi |_{ W^{1,2}(\Delta _h)}}_{\le C_{11} h^d | \phi |_{ W^{2,\infty }(\varOmega )}} + C_{10} h^{d+1} |\nabla \phi |_{W^{1,\infty }(\varOmega )}\big ) \end{aligned}$$

and noting that the right-hand side converges to zero as \(h\rightarrow 0\). \(\square\)

Now we are ready to prove the proposition.

Proof (Proposition 1)

Let

$$\begin{aligned} H^{s} = \varOmega \setminus \bigcup _{\textbf{i}:\, \omega B_{\textbf{i},h}^{\textbf{p}}\ne 0} \text {supp} B_{\textbf{i},h}^{\textbf{p}} \subset H \end{aligned}$$

be the subdomain of \(\varOmega\) with the property that no basis function possesses a support which simultaneously overlaps \(\varOmega _0\) and \(H^s\), see Fig. 12.

Fig. 12
figure 12

A domain \(\varOmega\), a subdomain H (hole, light and dark blue) and the resulting subdomain \(H^s\) (dark blue), for \(p=3\)

We split the domain into several subdomains and obtain

$$\begin{aligned}{} & {} | u_h|_{W^{2,2}(\varOmega ),\lambda }^2 = \int \limits _{\varOmega } \lambda ({\textbf {t}}) {\sum _{\nu ,\eta =1}^d (\partial _{\nu \eta } u_h({\textbf {t}}))^2} \textrm{d}{} {\textbf {t}} \\{} & {} = \underbrace{\int \limits _{\varOmega _0} \lambda {\sum \limits _{\nu ,\eta =1}^d (\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}}}_{(a)} + \underbrace{\int \limits _{H \setminus H^{s}} \lambda {\sum \limits _{\nu ,\eta =1}^d (\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}}}_{(b)} + \underbrace{\int \limits _{H^{s}} \lambda {\sum \limits _{\nu ,\eta =1}^d (\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}}}_{(c)}. \end{aligned}$$

We note that \(\lambda |_{\varOmega _0} = 0\), thus the integral (a) does not contribute to the squared \(L^2\) norm. Similarly, the integral (c) also vanishes since \(T_h^p (\varPi _h^p f)|_{H^{s}}=0\). The integral (b) can be estimated by

$$\begin{aligned}{} & {} \int \limits _{H \setminus H^{s}} \lambda {\sum \limits _{\nu ,\eta =1}^d (\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}} = \int \limits _{H \setminus H^{s}} \lambda {\sum \limits _{\nu ,\eta =1}^d (\partial _{\nu \eta }T^p_h \varPi ^p_h f)^2} \textrm{d}{} {\textbf {t}} \\\le & {} \int \limits _{H \setminus H^{s}} \lambda {\sum \limits _{\nu ,\eta =1}^d} {\underset{B_{{\textbf {i}},h}^{p}\cdot B_{{\textbf {j}},h}^{p}|_{H\setminus H^{s}}\ne 0}{\underset{{\textbf {j}}:\, 0\le {\textbf {j}} \le {\textbf {m}}_{h}+p}{\underset{{\textbf {i}}:\, 0\le {\textbf {i}} \le {\textbf {m}}_{h}+p}{\sum }}}} |\varvec{\mu }^{p}_{{\textbf {i}},h}(f) \varvec{\mu }^{p}_{{\textbf {j}},h}(f)| \; |\partial _{\nu \eta } B_{{\textbf {i}},h}^{p} {\partial _{\nu \eta }} B_{{\textbf {j}},h}^{p}|\, \textrm{d}{} {\textbf {t}}. \end{aligned}$$

According to Lemma 3 there exists a constant \(C_4\) — which depends on f — such that the coefficient functionals satisfy \(|\mu ^{p}_{{\textbf {i}},h}(f)|\le C_4\) if the value of h is sufficiently small, hence

$$\begin{aligned} \int \limits _{H \setminus H^s} \lambda \sum \limits _{\nu ,\eta =1}^d {(\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}} \le&\ C_4^2 \int \limits _{H \setminus H^s} \lambda {\sum \limits _{\nu ,\eta =1}^d} {\underset{B_{{\textbf {i}},h}^{p}\cdot B_{{\textbf {j}},h}^{p}|_{H\setminus H^{s}}\ne 0}{\underset{{\textbf {j}}:\, 0\le {\textbf {j}} \le {\textbf {m}}_{h}+p}{\underset{{\textbf {i}}:\, 0\le {\textbf {i}} \le {\textbf {m}}_{h}+p}{\sum }}}} (|\partial _{\nu \eta } B_{{\textbf {i}},h}^{p} {\partial _{\nu \eta }} B_{{\textbf {j}},h}^{p}|) \textrm{d}{} {\textbf {t}}. \end{aligned}$$

Moreover, for all \(\nu\), \(\eta\), \({\textbf {i}}\) and \({\textbf {j}}\) there exists a constant \(C_5\) such that

$$\begin{aligned} |\partial _{\nu \eta } B_{{\textbf {i}},h}^{p} {\partial _{\nu \eta }} B_{{\textbf {j}},h}^{p}| \le C_5 h^{-4}, \end{aligned}$$

thus

$$\begin{aligned} \int \limits _{H \setminus H^s} \lambda \sum \limits _{\nu ,\eta =1}^d {(\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}} \le&\ C_4^2 C_5 h^{-4} \int \limits _{H \setminus H^s} \lambda {\sum \limits _{\nu ,\eta =1}^d} {\underset{B_{{\textbf {i}},h}^{p}\cdot B_{{\textbf {j}},h}^{p}|_{H\setminus H^{s}}\ne 0}{\underset{{\textbf {j}}:\, 0\le {\textbf {j}} \le {\textbf {m}}_{h}+p}{\underset{{\textbf {i}}:\, 0\le {\textbf {i}} \le {\textbf {m}}_{h}+p}{\sum }}}} 1 \; \textrm{d}{} {\textbf {t}}. \end{aligned}$$

The number of terms in the summation can be bounded by a constant multiplied with the number of elements that intersect \(H\setminus H^s\), i.e., by \(\frac{C_6}{h^{d-1}}\), where the constant \(C_6\) depends on pd and \(\omega\). We thus arrive at

$$\begin{aligned} \int \limits _{H \setminus H^s} \lambda \sum \limits _{\nu ,\eta =1}^d {(\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}} \le C_4^2 C_5 C_6 h^{-d-3} \int \limits _{H \setminus H^s} \lambda \; \textrm{d}{} {\textbf {t}}. \end{aligned}$$

We now use the assumption (4), which implies

$$\begin{aligned} \lambda ({\textbf {t}}) \le \varepsilon {\text {dist}}({\textbf {t}}, \partial H)^{q} \le \varepsilon C_7 h^q \text { on } H\setminus H^{s}\ \end{aligned}$$

and the fact that

$$\begin{aligned} \textrm{vol}_d(H\setminus H^s) \le C_8 h \end{aligned}$$

to get

$$\begin{aligned} \int \limits _{H \setminus H^s} \lambda \; \textrm{d}{} {\textbf {t}} \le \varepsilon C_7C_8 h^{q+1}. \end{aligned}$$

Finally we arrive at

$$\begin{aligned} \int \limits _{H \setminus H^s} \lambda \sum \limits _{\nu ,\eta =1}^d {(\partial _{\nu \eta } u_h)^2} \textrm{d}{} {\textbf {t}} \le \varepsilon C_4^2 C_5 C_6 C_7 C_8 h^{q-d-2}. \end{aligned}$$

The claimed result then follows since \(q\ge 2p+4+d\) is assumed in the theorem. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merchel, S., Jüttler, B. & Mokriš, D. Adaptive and local regularization for data fitting by tensor-product spline surfaces. Adv Comput Math 49, 58 (2023). https://doi.org/10.1007/s10444-023-10035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10035-1

Keywords

Mathematics Subject Classification (2010)

Navigation