Skip to main content
Log in

Exact posterior distribution for nonconjugate Pareto models

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In Bayesian analysis, the so-called conjugate models allow obtaining the posterior distribution in exact form, in the sense that the posterior quantities can explicitly be written in a computable form. However, this class of models only involves a few structures, with some specific prior distribution for every data distribution. Although approximate methods such as numerical integration and MCMC are very efficient in Bayesian inference, little attention has been devoted to alternative views. In particular, the well-known conjugate Pareto-Gamma model is very restrictive, since the prior information can be expressed only through a Gamma distribution. In this work, we use special functions to extend the class of possible prior distributions that allow obtaining the posterior distribution in exact form. We give results that allow the use of any prior distribution within the broad class of H-functions. An example is provided to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amin, Z.H.: Bayesian inference for the Pareto lifetime model under progressive censoring with binomial removals. J. Appl. Stat. 35(11), 1203–1217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrade, J.A.A., O’Hagan, A.: Bayesian robustness modelling using regularly varying distributions. Bayesian Analysis. 1(1), 169–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrade, J.A.A.: Exact posterior computation for the binomial-Kumaraswamy model. Adv. Comput. Math. 46(6), 1–14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrade, J.A.A., Rathie, P.N.: On exact posterior distributions using H-functions. J. Comput. Appl. Math. 290, 459–475 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andrade, J.A.A., Rathie, P.N.: Exact posterior computation in non-Conjugate Gaussian location-scale parameters models. Communications in Nonlinear Science and Numerical Simulation. 53, 111–129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrade, J.A.A., Rathie, P.N., Farias, R.B.A.: Exact Bayesian computation using H-functions. Comput. Appl. Math. 38, 2277–2293 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dixit, U.J., Nooghabi, J.M.: Bayesian inference for the Pareto lifetime model in the presence of outliers under progressive censoring with binomial removals. Hacettepe J. Math. Stat. 46(5), 887–906 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Fox, C.: The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 98, 395–429 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications 96 (2nd ed.). University Press, Cambridge (2004)

  10. Luke, Y.L.: The Special Functions and Their Approximations. Academic Press, New York (1979)

    Google Scholar 

  11. Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-Function: Theory and Applications. Springer, New York (2010)

    Book  MATH  Google Scholar 

  12. Balakrishnan, Cramer, E.: The Art of Progressive Censoring, Springer, New York, USA (2014)

  13. Pericchi, L.R., Smith, A.F.M.: Exact and approximate posterior moments for a normal location parameter. J. Roy. Statist. Soc. Ser. B. 54(3), 793–804 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Psarakis, S., Panaretos, J.: The folded t distribution. Communications in Statistics - Theory and Methods. 19(7), 2717–2734 (1990)

    Article  MathSciNet  Google Scholar 

  15. Rigaill, G., Lebarbier, E., Robin, S.: Exact posterior distributions and model selection criteria for multiple change-point detection problems. Stat. Comput. 22(4), 917–929 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Scollnik, D.P.M.: A Pareto scale-inflated outlier model and its Bayesian analysis. Scand. Actuar. J. 3, 201–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H -function of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)

    MATH  Google Scholar 

  18. Sun, F., Cao, Y., Zhang, S., Sun, H.: The Bayesian Inference of Pareto Models Based on Information Geometry. Entropy. 23(45), (2021). https://doi.org/10.3390/e23010045

  19. Vilar-Zanón, J., Lozano-Colomer, C.: On Pareto Conjugate Priors and Their Application to Large Claims Reinsurance Premium Calculation. ASTIN Bull. 37(2), 405–428 (2007). https://doi.org/10.1017/S0515036100014938

  20. Villa, C.: Bayesian estimation of the threshold of a generalized Pareto distribution for heavy-tailed observations. TEST 26(1), 95–118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. A. Andrade.

Ethics declarations

The authors declare no competing interests.

Additional information

Communicated by: Akil Narayan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Proof

The likelihood of a Pareto distribution is given by

$$\begin{aligned} {L}_{x}\left( \theta \right) ={\theta }^{k}{x}_{m}^{k\theta }\prod _{i=1}^{k}\frac{1}{{x}_{i}^{\theta +1}}\times I\left( t\ge {x}_{m}\right) ={k}_{1}{\theta }^{k}{e}^{-\theta {\sum }_{i=1}^{k}\textrm{log}\left( \frac{{x}_{i}}{{x}_{m}}\right) }\times I\left( t\ge {x}_{m}\right) , \end{aligned}$$
(1)

where \(t=\min (x_i)\) and \(k_1=1/\prod _{i=1}^k x_i\). We write the unnormalized posterior moments in terms of H-functions,

$$\begin{aligned} I\left( r\right)= & {} {\int }_{0}^{\infty }{\theta }^{r}{L}_{x}\left( \theta \right) p\left( \theta \right) d\theta ={k}_{1}{\int }_{0}^{\infty }{\theta }^{r+{k}}{e}^{-\theta {\sum }_{i=1}^{k}\textrm{log}\left( \frac{{x}_{i}}{{x}_{m}}\right) p\left( \theta \right) d\theta ,}\nonumber \\= & {} {k}_{1}{k}_{2}{\int }_{0}^{\infty }{\theta }^{r+k+{\alpha }_{2}}{H}_{0~1}^{1~0}\left[ \theta \sum _{i=1}^{k}\textrm{log}\left( \frac{{x}_{i}}{{x}_{m}}\right) \Bigg |\begin{array}{c}-\\ \left( \textrm{0,1}\right) \end{array}\right] {H}_{M~N}^{P~Q}\left[ {c\theta }^{d}\Bigg |\begin{array}{c}{}_{1}{\left( {c}_{j},{C}_{j}\right) }_{P}\\ {}_{1}{\left( {d}_{j},{D}_{j}\right) }_{Q}\end{array}\right] d\theta . \end{aligned}$$

The result follows by Theorem 3, by letting \(\alpha _{1}=k+1\), \(m=q=1\), \(n=p=0\), \(a=\sum _{i=1}^k\log \left( \frac{x_i}{x_m}\right) \), \(b=1\) and \((b_{1},B_{1})=(0,1)\). \(\square \)

Proof of Theorem 4

Considering the posterior distribution (11),

$$\begin{aligned} P\left( \theta \le \vartheta |x\right)= & {} \frac{{k}_{2}}{I\left( 0\right) {\prod }_{i=1}^{k}{x}_{i}}{\int }_{0}^{\vartheta }{\theta }^{k+{\alpha }_{2}}{e}^{-\theta {\sum }_{i=1}^{k}\textrm{log}\left( \frac{{x}_{i}}{{x}_{m}}\right) }{H}_{M~N}^{P~Q}\left[ {c\theta }^{d}\Bigg |\begin{array}{c}{}_{1}{\left( {c}_{j},{C}_{j}\right) }_{P}\\ {}_{1}{\left( {d}_{j},{D}_{j}\right) }_{Q}\end{array}\right] \nonumber \\= & {} \frac{{k}_{2}}{I\left( 0\right) {\prod }_{i=1}^{k}{x}_{i}}\!\sum _{j=0}^{\infty }\frac{{\left( \!-{\sum }_{i=1}^{k}\textrm{log}\!\left( \frac{{x}_{i}}{{x}_{m}}\right) \right) }^{j}}{j!}\!{\int }_{0}^{\vartheta }{\theta }^{k+{\alpha }_{2}+j}{H}_{M~N}^{P~Q}\!\left[ {c\theta }^{d}\Bigg |\begin{array}{c}{}_{1}{\left( {c}_{j},{C}_{j}\right) }_{P}\\ {}_{1}{\left( {d}_{j},{D}_{j}\right) }_{Q}\end{array}\!\right] d\theta . \end{aligned}$$

From Definition 1, letting U be the integral above, we have

$$\begin{aligned} U= & {} \frac{1}{2\pi i}{\int }_{L}\phi \left( s\right) {c}^{s}{\int }_{0}^{\vartheta }{\theta }^{k+{\alpha }_{2}+j-ds}d\theta ds,\nonumber \\= & {} \frac{1}{2\pi i}{\int }_{L}\phi \left( s\right) {c}^{s}\frac{{\vartheta }^{k+{\alpha }_{2}+j-ds+1}}{k+{\alpha }_{2}+j-ds+1}d\theta ds,\\= & {} {\vartheta }^{k+{\alpha }_{2}+j+ds+1}\frac{1}{2\pi i}{\int }_{L}\phi \left( s\right) \frac{\Gamma \left( k+{\alpha }_{2}+j-ds+1\right) }{\Gamma \left( k+{\alpha }_{2}+j-ds+2\right) }{\left( {c\vartheta }^{d}\right) }^{-s}ds. \end{aligned}$$

Hence the result follows from Definition 1. \(\square \)

Proof of Theorem 5

The posterior predictive distribution is

$$\begin{aligned} p\left( \widetilde{x}|x\right) ={\int }_{0}^{\infty }{L}_{\widetilde{x}}\left( \theta \right) p\left( \theta |x\right) d\theta =\frac{1}{I\left( 0\right) }{\int }_{0}^{\infty }{L}_{\widetilde{x}}\left( \theta \right) {L}_{x}\left( \theta \right) p\left( \theta \right) d\theta \end{aligned}$$

If we combine \(L_{\widetilde{x}}(\theta )\) and \( L_{\textit{x}}(\theta )\), we have

$$\begin{aligned} {L}_{\widetilde{x},x}^{^{\prime }}\left( \theta \right) ={L}_{\widetilde{x}}\left( \theta \right) {L}_{x}\left( \theta \right) ={k}_{1}^{^{\prime }}{\theta }^{{\theta }_{1}^{^{\prime }}-1}{H}_{0~1}^{1~0}\left[ a^{\prime }\theta \Bigg |\begin{array}{c}-\\ \left( \textrm{0,1}\right) \end{array}\right] , \end{aligned}$$

where \(k_1'=(\widetilde{x}\prod _{=1}^k x_i)^{-1},\,\alpha _{1}'=k+2\), \(a'=\log \left( \widetilde{x}/x_{m}\right) +\sum _{i=1}^k\log \left( x_{i}/x_{m}\right) \) and \(b'=1\).

It follows that we have the same situation as in Theorem 4, that is a likelihood function \(L_{\widetilde{x},\textit{x}}'(\theta )\) and the prior distribution \(p(\theta )\), hence we can apply Theorem 3 with \(r=0\) and the result follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, J.A.A., Rathie, P.N. Exact posterior distribution for nonconjugate Pareto models. Adv Comput Math 49, 35 (2023). https://doi.org/10.1007/s10444-023-10030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10030-6

Keywords

Mathematics Subject Classification (2010)

Navigation