Skip to main content
Log in

A quadratic finite volume method for nonlinear elliptic problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a quadratic finite volume method (FVM) for solving second-order nonlinear elliptic problems. Under reasonable assumptions, we shall establish the existence and uniqueness of the quadratic FVM approximation and develop the error analysis of the approximation solution. To be specific, without any additional requirements on the underlying triangular meshes, we derive the optimal error estimate by assumption that \(u\in H^{3}\cap W^{2,\infty }\), where u is the solution of the nonlinear elliptic problems. Numerical experiments are presented to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulle, A., Vilmart, G.: A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems. Numer. Math. 121, 397–431 (2012)

    Article  MathSciNet  Google Scholar 

  2. Andre, N., Chipot, M.: Uniqueness and nonuniqueness for the approximation of quasilinear elliptic equations. SIAM J. Numer. Anal. 33, 1981–1994 (1996)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 18, 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  4. Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bi, C., Ginting, V.: Finite volume element method for second-order quasilinear elliptic problems. IMA J. Numer. Anal. 31, 1062–1089 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bi, C., Wang, C., Lin, Y.: A posteriori error estimates of finite volume element method for second-order quasilinear elliptic problems. Int. J. Numer. Anal. Mod. 13, 22–40 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  8. Chatzipantelidis, P., Ginting, V.: A finite volume element method for a nonlinear parabolic problem, vol. 45, pp 121–136. Springer, New York (2013)

    MATH  Google Scholar 

  9. Chatzipantelidis, P., Ginting, V., Lazarov, R.D.: A finite volume element method for a non-linear elliptic problem. Numer. Linear Algebra Appl. 12, 515–546 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chen, C., Chen, Y., Zhao, X.: A posteriori error estimates of two-grid finite volume element methods for nonlinear elliptic problems. Comput. Math. Appl. 75, 1756–1766 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chen, C., Liu, H., Zheng, X., Wang, H.: A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations. Comput. Math. Appl. 79, 2771–2783 (2020)

    Article  MathSciNet  Google Scholar 

  12. Chen, C., Li, K., Chen, Y., Huang, Y.: Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comput. Math. 45, 611–630 (2019)

    Article  MathSciNet  Google Scholar 

  13. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4021–4043 (2010)

    Article  MathSciNet  Google Scholar 

  14. Chen, L., Chen, Y.: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput. 49, 383–401 (2011)

    Article  MathSciNet  Google Scholar 

  15. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problem. Adv. Comput. Math. 37, 191–253 (2012)

    Article  MathSciNet  Google Scholar 

  16. Chen, Z., Xu, Y., Zhang, J.: A second-order hybrid finite volume method for solving the stokes equation. Appl. Numer. Math. 119, 213–224 (2017)

    Article  MathSciNet  Google Scholar 

  17. Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comp. 84, 599–628 (2015)

    Article  MathSciNet  Google Scholar 

  18. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  19. Douglas, J., Dupont, T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 29, 689–696 (1975)

    Article  MathSciNet  Google Scholar 

  20. Du, Y., Li, Y., Sheng, Z.: Quadratic finite volume method for a nonlinear elliptic problem. Adv. Appl. Math. Mech. 11, 838–869 (2019)

    Article  MathSciNet  Google Scholar 

  21. Emonot, P.: Methodes De Volumes Elements Finis: Applications Aux Equations De Navier-Stokes Et Resultats De Convergence. Ph.D. thesis, University of Lyon, Lyon (1992)

    Google Scholar 

  22. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press World Publishing Corp, Cambridge (1985)

    Book  Google Scholar 

  23. Li, R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24, 77–88 (1987)

    Article  MathSciNet  Google Scholar 

  24. Li, R., Chen, Z., Wu, W.: Generalized difference methods for differential equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)

    Book  Google Scholar 

  25. Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57, 281–299 (1996)

    Article  MathSciNet  Google Scholar 

  26. Rudin, W.: Functional Analysis, 2nd edn. Mc Graw Hill Education, New York (2003)

    MATH  Google Scholar 

  27. Tian, M., Chen, Z.: Quadratic element generalized differential methods for elliptic equations. Numer. Math. J. Chinese Universities 13, 99–113 (1991)

    MathSciNet  Google Scholar 

  28. Wang, X., Li, Y.: L2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Numer. Anal. 54, 2729–2749 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wang, X., Li, Y.: Superconvergence of quadratic finite volume method on triangular meshes. J. Comput. Appl. Math. 348, 181–199 (2019)

    Article  MathSciNet  Google Scholar 

  30. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  Google Scholar 

  31. Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MathSciNet  Google Scholar 

  32. Yang, M., Liu, J., Lin, Y.: Quadratic finite-volume methods for elliptic and parabolic problems on quadrilateral meshes: optimal-order errors based on Barlow points. IMA J. Numer. Anal. 33, 1342–1364 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zou, Q.: An unconditionally stable quadratic finite volume scheme over triangular meshes for elliptic equations. J. Sci. Comput. 70, 112–124 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions leading to an improvement of this paper.

Funding

This work was supported in part by the National Natural Science Foundation of China under grants 11771375, 11571115, 11901506, and 11571297, and by the Shandong Province Natural Science Foundation under grants ZR2018QA003 and ZR2018MA008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjia Bi.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, C. & Bi, C. A quadratic finite volume method for nonlinear elliptic problems. Adv Comput Math 47, 32 (2021). https://doi.org/10.1007/s10444-021-09853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09853-y

Keywords

Mathematics Subject Classification 2010

Navigation