Skip to main content
Log in

Nonstationary Gabor frames - approximately dual frames and reconstruction errors

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Nonstationary Gabor frames, recently introduced in adaptive signal analysis, represent a natural generalization of classical Gabor frames by allowing for adaptivity of windows and lattice in either time or frequency. Due to the lack of a complete lattice structure, perfect reconstruction is in general not feasible from coefficients obtained from nonstationary Gabor frames. In this paper it is shown that for nonstationary Gabor frames that are related to some known frames for which dual frames can be computed, good approximate reconstruction can be achieved by resorting to approximately dual frames. In particular, we give constructive examples for so-called almost painless nonstationary frames, that is, frames that are closely related to nonstationary frames with compactly supported windows. The theoretical results are illustrated by concrete computational and numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balan, R., Casazza, P. G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames I. Theory. J. Fourier Anal. Appl. 12(2), 105–143 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G. A.: Theory, implementation and applications of nonstationary gabor frames. J. Comput. Appl. Math. 236 (2011)

  3. Balazs, P., Dörfler, M., Kowalski, M., Torrésani, B.: Adapted and adaptive linear time-frequency representations: a synthesis point of view. IEEE Signal Proc. Mag. 30(6), 20–31 (2013)

    Article  Google Scholar 

  4. Brown, J.: Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. 89(1), 425–434 (1991)

    Article  Google Scholar 

  5. Casazza, P. G., Christensen, O.: Gabor frames over irregular lattices. Adv. Comput. Math. 18(2-4), 329–344 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Christensen, O.: Perturbation of frames and applications to Gabor frames. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 193–209. Birkhauser Boston (1998)

  7. Christensen, O., Laugesen, R.: Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal Image Process. (2010)

  8. Chui, C. K., Shi, X.: Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J. Math. Anal. 24(1), 263–277 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chui, C. K., Shi, X.: Bessel sequences and affine frames. Appl. Comput. Harmon. Anal., 29–49 (1994)

  10. Daubechies, I., Grossmann, A., Meyer, Y. : Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. De Queiroz, R., Rao, K.: Time-varying lapped transforms and wavelet packets. IEEE Trans. Signal Process. 41(12), 3293–3305 (1993)

    Article  MATH  Google Scholar 

  12. Dörfler, M: Quilted Gabor frames - a new concept for adaptive time-frequency representation. Adv. Appl. Math. 47(4), 668–687 (2011)

    Article  MATH  Google Scholar 

  13. Dörfler, M., Matusiak, E.: Nonstationary gabor frames - existence and construction preprint, arXiv:1112.5262 (2012)

  14. Evangelista, G., Dörfler, M., Matusiak, E.: Arbitrary phase vocoders by means of warping. Musica/Tecnologia, 7 (2013)

  15. Favier, S. J., Zalik, R. A.: On the stability of frames and riesz bases. Appl. Comput. Harmon. Anal. 2(2), 160–173 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Feichtinger, H. G., Sun, W.: Sufficient conditions for irregular Gabor frames. Adv. Comput. Math. 26(4), 403–430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gröchenig, K.: Foundations of time-frequency analysis. Appl. Numer. Harmon. Anal. (2001). Birkhäuser Boston

  18. Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Holighaus, N.: Structure of nonstationary gabor frames and their dual systems. preprint, arXiv:1306.5037 (2013)

  20. Holighaus, N., Dörfler, M., Velasco, G. A., Grill, T.: A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process. 21(4), 775–785 (2013)

    Article  Google Scholar 

  21. Jaillet, F.: Représentation et traitement temps-fréquence des signaux audionumériques pour des applications de design sonore. Université de la Méditerranée - Aix-Marseille II, PhD thesis (2005)

    Google Scholar 

  22. Jaillet, F., Torrésani, B.: Timefrequency jigsaw puzzle: adaptive multiwindow and multilayered Gabor expansions. Int. J. Wavelets Multiresolut. Inf. Process. 2, 293–316 (2007)

    Article  Google Scholar 

  23. Janssen, A., Sondergaard, P. L.: Iterative algorithms to approximate canonical Gabor windows computational aspects. J. Fourier Anal. Appl. 13(2), 211–241 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, S.: Discrete multi-Gabor expansions. IEEE Trans, Inform. Theory 45(6), 1954–1967 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, S.: Proportional nonuniform multi-Gabor expansions. EURASIP J. Appl. Signal Process. 2004(17), 2723–2731 (2004)

    Article  MATH  Google Scholar 

  26. Liuni, M.: Automatic Adaptation of Sound Analysis and Synthesis. Università di Firenze and IRCAM, PhD thesis (2012)

    Google Scholar 

  27. Liuni, M., Robel, A., Matusiak, E., Romito, M., Rodet, X.: Automatic adaptation of the time-frequency resolution for sound analysis and re-synthesis. IEEE Trans. Audio, Speech, and Language Process 21(5), 959–970 (2013)

    Article  Google Scholar 

  28. Malvar, H.: Signal processing with Lapped Transforms. Boston, Artech House, xvi (1992)

    MATH  Google Scholar 

  29. Necciari, T., Balazs, P., Holighaus, N., Sondergaard, P.: The erblet transform: an auditory-based time-frequency representation with perfect reconstruction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 498–502 (2013)

  30. Romero, J. L.: Surgery of spline-type and molecular frames. J. Fourier Anal. Appl. 17, 135–174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sodagar, I., Nayebi, K., Barnwell, I. T. P.: Time-varying filter banks and wavelets. IEEE Trans. Signal Process. 42(11), 2983–2996 (1994)

    Article  Google Scholar 

  32. Sondergaard, P.: Efficient algorithms for the discrete Gabor transform with a long Fir window. J. Fourier Anal. Appl. 18(3), 456–470 (2012)

    Article  MathSciNet  Google Scholar 

  33. Strohmer, T.: Approximation of dual Gabor frames, window decay, and wireless communications. Appl. Comput. Harmon. Anal. 11(2), 243–262 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Trefethen, L., Bau, D.: Numerical Linear Algebra SIAM (2000)

  35. Velasco, G. A., Holighaus, N., Dörfler, M., Grill, T.: Constructing an invertible constant-Q transform with non-stationary Gabor frames. In: Proceedings of DAFX11 (2011)

  36. Young, R. M.: An Introduction to Nonharmonic Fourier Series, Revised 1st edn. Academic Press (2001)

  37. Zeevi, Y. Y., Zibulski, M., Porat, M.: Multi-window Gabor schemes in signal and image representations. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 381–407. Birkhauser Boston (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Dörfler.

Additional information

Communicated by: Y. Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörfler, M., Matusiak, E. Nonstationary Gabor frames - approximately dual frames and reconstruction errors. Adv Comput Math 41, 293–316 (2015). https://doi.org/10.1007/s10444-014-9358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9358-z

Keywords

Mathematics Subject Classification (2010)

Navigation